scispace - formally typeset
Open AccessJournal ArticleDOI

Encoding many channels on the same frequency through radio vorticity: first experimental test

Reads0
Chats0
TLDR
In this paper, it was shown experimentally that two beams of incoherent radio waves, transmitted on the same frequency but encoded in two different orbital angular momentum states, can simultaneously transmit two independent radio channels.
Abstract
We have shown experimentally, in a real-world setting, that it is possible to use two beams of incoherent radio waves, transmitted on the same frequency but encoded in two different orbital angular momentum states, to simultaneously transmit two independent radio channels. This novel radio technique allows the implementation of, in principle, an infinite number of channels in a given, fixed bandwidth, even without using polarization, multiport or dense coding techniques. This paves the way for innovative techniques in radio science and entirely new paradigms in radio communication protocols that might offer a solution to the problem of radio-band congestion.

read more

Citations
More filters
Journal ArticleDOI

Terabit free-space data transmission employing orbital angular momentum multiplexing

TL;DR: In this paper, the authors demonstrate the ability to multiplex and transfer data between twisted beams of light with different amounts of orbital angular momentum, which provides new opportunities for increasing the data capacity of free-space optical communications links.
Journal ArticleDOI

Optical communications using orbital angular momentum beams

TL;DR: In this article, the authors review recent progress in OAM beam generation/detection, multiplexing/demultiplexing, and its potential applications in different scenarios including free-space optical communications, fiber-optic communications, and RF communications.
Journal ArticleDOI

High-capacity millimetre-wave communications with orbital angular momentum multiplexing

TL;DR: This work demonstrates a 32-Gbit’s−1 millimetre-wave link over 2.5 metres with a spectral efficiency of ~16 bit s− 1 Hz−1 using four independent orbital–angular momentum beams on each of two polarizations, and shows an 8-Gbits−1 link containing two orbital angular momentum beams with crosstalk less than −12.5 dB.
Journal ArticleDOI

The requirements, challenges, and technologies for 5G of terrestrial mobile telecommunication

TL;DR: In this article, the authors summarize the 5G mobile communication requirements and challenges and present a potential step change for the evolution toward 5G, which shows that macro-local coexisting and coordinating paths will replace one macrodominated path as in 4G and before.
Journal ArticleDOI

Orbital angular momentum 25 years on [Invited]

TL;DR: A brief review of the research in the field to date is examined and what future directions might hold is considered.
References
More filters
Journal ArticleDOI

A revolution in optical manipulation

TL;DR: This research presents the next generation of single-beam optical traps, which promise to take optical tweezers out of the laboratory and into the mainstream of manufacturing and diagnostics and even become consumer products.
Journal ArticleDOI

Entanglement of the orbital angular momentum states of photons

TL;DR: This work demonstrates entanglement involving the spatial modes of the electromagnetic field carrying orbital angular momentum, which provides a practical route to entangled states that involves many orthogonal quantum states, rather than just two Multi-dimensional entangled states could be of considerable importance in the field of quantum information, enabling, for example, more efficient use of communication channels in quantum cryptography.
Journal ArticleDOI

Free-space information transfer using light beams carrying orbital angular momentum

TL;DR: The transfer of information encoded as orbital angular momentum states of a light beam is demonstrated, which is resistant to eavesdropping and gives an experimental insight into the effects of aperturing and misalignment of the beam on the OAM measurement and demonstrates the uncertainty relationship for OAM.
Journal ArticleDOI

Entanglement of Orbital Angular Momentum States of Photons

TL;DR: In this article, the orbital angular momentum of photons is exploited to achieve multi-dimensional entanglement in higher dimensions, i.e., the state of the electromagnetic field with phase singularities (doughnut modes).
Related Papers (5)
Trending Questions (1)
How to use radio interface?

This paves the way for innovative techniques in radio science and entirely new paradigms in radio communication protocols that might offer a solution to the problem of radio-band congestion.