scispace - formally typeset
Journal ArticleDOI

Estimating Land Surface Evaporation: A Review of Methods Using Remotely Sensed Surface Temperature Data

TLDR
In this article, the authors present a review of methods for estimating evaporation from landscapes, regions and larger geographic extents, with remotely sensed surface temperatures, and highlight uncertainties and limitations associated with those estimation methods.
Abstract
This paper reviews methods for estimating evaporation from landscapes, regions and larger geographic extents, with remotely sensed surface temperatures, and highlights uncertainties and limitations associated with those estimation methods. Particular attention is given to the validation of such approaches against ground based flux measurements. An assessment of some 30 published validations shows an average root mean squared error value of about 50 W m−2 and relative errors of 15–30%. The comparison also shows that more complex physical and analytical methods are not necessarily more accurate than empirical and statistical approaches. While some of the methods were developed for specific land covers (e.g. irrigation areas only) we also review methods developed for other disciplines, such as hydrology and meteorology, where continuous estimates in space and in time are needed, thereby focusing on physical and analytical methods as empirical methods are usually limited by in situ training data. This review also provides a discussion of temporal and spatial scaling issues associated with the use of thermal remote sensing for estimating evaporation. Improved temporal scaling procedures are required to extrapolate instantaneous estimates to daily and longer time periods and gap-filling procedures are needed when temporal scaling is affected by intermittent satellite coverage. It is also noted that analysis of multi-resolution data from different satellite/sensor systems (i.e. data fusion) will assist in the development of spatial scaling and aggregation approaches, and that several biological processes need to be better characterized in many current land surface models.

read more

Citations
More filters
Journal ArticleDOI

Investigating soil moisture-climate interactions in a changing climate: A review

TL;DR: In this paper, the authors provide a synthesis of past research on the role of soil moisture for the climate system, based both on modelling and observational studies, focusing on soil moisture-temperature and soil moistureprecipitation feedbacks, and their possible modifications with climate change.
Journal ArticleDOI

Improvements to a MODIS global terrestrial evapotranspiration algorithm

TL;DR: In this article, an improved version of the global evapotranspiration (ET) algorithm based on MODIS and global meteorology data has been proposed, which simplifies the calculation of vegetation cover fraction, calculating ET as the sum of daytime and nighttime components, adding soil heat flux calculation, improving estimates of stomatal conductance, aerodynamic resistance and boundary layer resistance, separating dry canopy surface from the wet and dividing soil surface into saturated wet surface and moist surface.
Journal ArticleDOI

Landsat-8: Science and Product Vision for Terrestrial Global Change Research

TL;DR: Landsat 8, a NASA and USGS collaboration, acquires global moderate-resolution measurements of the Earth's terrestrial and polar regions in the visible, near-infrared, short wave, and thermal infrared as mentioned in this paper.
Journal ArticleDOI

Satellite-derived land surface temperature: Current status and perspectives

TL;DR: A review of the current status of selected remote sensing algorithms for estimating land surface temperature from thermal infrared (TIR) data is presented in this article, along with a survey of the algorithms employed for obtaining LST from space-based TIR measurements.
References
More filters
Book

Crop evapotranspiration : guidelines for computing crop water requirements

TL;DR: In this paper, an updated procedure for calculating reference and crop evapotranspiration from meteorological data and crop coefficients is presented, based on the FAO Penman-Monteith method.
Journal ArticleDOI

Natural evaporation from open water, bare soil and grass

TL;DR: It is shown that a satisfactory account can be given of open water evaporation at four widely spaced sites in America and Europe, the results for bare soil receive a reasonable check in India, and application of theresults for turf shows good agreement with estimates of evapolation from catchment areas in the British Isles.
Journal ArticleDOI

Overview of the radiometric and biophysical performance of the MODIS vegetation indices

TL;DR: In this paper, the authors evaluated the performance and validity of the MODIS vegetation indices (VI), the normalized difference vegetation index (NDVI) and enhanced vegetation index(EVI), produced at 1-km and 500-m resolutions and 16-day compositing periods.
Journal ArticleDOI

On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters

TL;DR: In this article, the large-scale parameterization of the surface fluxes of sensible and latent heat is properly expressed in terms of energetic considerations over land while formulas of the bulk aerodynamic type are most suitahle over the sea.
Journal ArticleDOI

The future of distributed models: model calibration and uncertainty prediction.

TL;DR: The GLUE procedure works with multiple sets of parameter values and allows that, within the limitations of a given model structure and errors in boundary conditions and field observations, different sets of values may be equally likely as simulators of a catchment.
Related Papers (5)