scispace - formally typeset
Journal ArticleDOI

First-principles theory of dilute magnetic semiconductors

Reads0
Chats0
TLDR
In this article, a review summarizes recent first-principles investigations of the electronic structure and magnetism of dilute magnetic semiconductors (DMSs), which are interesting for applications in spintronics.
Abstract
This review summarizes recent first-principles investigations of the electronic structure and magnetism of dilute magnetic semiconductors (DMSs), which are interesting for applications in spintronics. Details of the electronic structure of transition-metal-doped III-V and II-VI semiconductors are described, especially how the electronic structure couples to the magnetic properties of an impurity. In addition, the underlying mechanism of the ferromagnetism in DMSs is investigated from the electronic structure point of view in order to establish a unified picture that explains the chemical trend of the magnetism in DMSs. Recent efforts to fabricate high-TC DMSs require accurate materials design and reliable TC predictions for the DMSs. In this connection, a hybrid method (ab initio calculations of effective exchange interactions coupled to Monte Carlo simulations for the thermal properties) is discussed as a practical method for calculating the Curie temperature of DMSs. The calculated ordering temperatures for various DMS systems are discussed, and the usefulness of the method is demonstrated. Moreover, in order to include all the complexity in the fabrication process of DMSs into advanced materials design, spinodal decomposition in DMSs is simulated and we try to assess the effect of inhomogeneity in them. Finally, recent works on first-principles theory of transport properties of DMSs are reviewed. The discussion is mainly based on electronic structure theory within the local-density approximation to density-functional theory.

read more

Citations
More filters
Journal ArticleDOI

VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code

TL;DR: VASPKIT as mentioned in this paper is a command-line program that aims at providing a robust and user-friendly interface to perform high-throughput analysis of a variety of material properties from the raw data produced by the VASP code.
Journal ArticleDOI

A ten-year perspective on dilute magnetic semiconductors and oxides

TL;DR: Recent experimental and theoretical developments are reviewed, emphasizing that they not only disentangle many controversies and puzzles accumulated over the past decade but also offer new research prospects.
Journal ArticleDOI

Calculating condensed matter properties using the KKR-Green's function method—recent developments and applications

TL;DR: The KKR-GF method as mentioned in this paper represents the electronic structure of a system directly and efficiently in terms of its single-particle Green's function (GF), which is in contrast to its original version and many other traditional wave-function-based all-electron band structure methods dealing with periodically ordered solids.
Journal ArticleDOI

Dilute ferromagnetic semiconductors: Physics and spintronic structures

TL;DR: In this article, a review compiles results of experimental and theoretical studies on thin films and quantum structures of semiconductors with randomly distributed Mn ions, which exhibit spintronic functionalities associated with collective ferromagnetic spin ordering.
Journal ArticleDOI

Atomistic spin model simulations of magnetic nanomaterials.

TL;DR: The key methods used in atomistic spin models are presented, which are then applied to a range of magnetic problems, and the parallelization strategies used enable the routine simulation of extended systems with full atomistic resolution.
References
More filters
Journal ArticleDOI

Self-Consistent Equations Including Exchange and Correlation Effects

TL;DR: In this paper, the Hartree and Hartree-Fock equations are applied to a uniform electron gas, where the exchange and correlation portions of the chemical potential of the gas are used as additional effective potentials.
Journal ArticleDOI

Inhomogeneous Electron Gas

TL;DR: In this article, the ground state of an interacting electron gas in an external potential was investigated and it was proved that there exists a universal functional of the density, called F[n(mathrm{r})], independent of the potential of the electron gas.
Journal ArticleDOI

Equation of state calculations by fast computing machines

TL;DR: In this article, a modified Monte Carlo integration over configuration space is used to investigate the properties of a two-dimensional rigid-sphere system with a set of interacting individual molecules, and the results are compared to free volume equations of state and a four-term virial coefficient expansion.
Journal ArticleDOI

Self-interaction correction to density-functional approximations for many-electron systems

TL;DR: In this paper, the self-interaction correction (SIC) of any density functional for the ground-state energy is discussed. But the exact density functional is strictly selfinteraction-free (i.e., orbitals demonstrably do not selfinteract), but many approximations to it, including the local spin-density (LSD) approximation for exchange and correlation, are not.
Related Papers (5)