scispace - formally typeset
Open AccessJournal ArticleDOI

Flavin Electron Shuttles Dominate Extracellular Electron Transfer by Shewanella oneidensis

Nicholas J. Kotloski, +1 more
- 01 Mar 2013 - 
- Vol. 4, Iss: 1
TLDR
A controversy in the field was addressed by demonstrating that flavin electron shuttling, not direct electron transfer or nanowires, is the primary mechanism of extracellular electron transfer employed by the bacterium Shewanella oneidensis.
Abstract
Shewanella oneidensis strain MR-1 is widely studied for its ability to respire a diverse array of soluble and insoluble electron acceptors. The ability to breathe insoluble substrates is defined as extracellular electron transfer and can occur via direct contact or by electron shuttling in S. oneidensis. To determine the contribution of flavin electron shuttles in extracellular electron transfer, a transposon mutagenesis screen was performed with S. oneidensis to identify mutants unable to secrete flavins. A multidrug and toxin efflux transporter encoded by SO_0702 was identified and renamed bfe (bacterial flavin adenine dinucleotide [FAD] exporter) based on phenotypic characterization. Deletion of bfe resulted in a severe decrease in extracellular flavins, while overexpression of bfe increased the concentration of extracellular flavins. Strains lacking bfe had no defect in reduction of soluble Fe(III), but these strains were deficient in the rate of insoluble Fe(III) oxide reduction, which was alleviated by the addition of exogenous flavins. To test a different insoluble electron acceptor, graphite electrode bioreactors were set up to measure current produced by wild-type S. oneidensis and the Δbfe mutant. With the same concentration of supplemented flavins, the two strains produced similar amounts of current. However, when exogenous flavins were not supplemented to bioreactors, bfe mutant strains produced significantly less current than the wild type. We have demonstrated that flavin electron shuttling accounts for ~75% of extracellular electron transfer to insoluble substrates by S. oneidensis and have identified the first FAD transporter in bacteria. IMPORTANCE Extracellular electron transfer by microbes is critical for the geochemical cycling of metals, bioremediation, and biocatalysis using electrodes. A controversy in the field was addressed by demonstrating that flavin electron shuttling, not direct electron transfer or nanowires, is the primary mechanism of extracellular electron transfer employed by the bacterium Shewanella oneidensis. We have identified a flavin adenine dinucleotide transporter conserved in all sequenced Shewanella species that facilitates export of flavin electron shuttles in S. oneidensis. Analysis of a strain that is unable to secrete flavins demonstrated that electron shuttling accounts for ~75% of the insoluble extracellular electron transfer capacity in S. oneidensis.

read more

Citations
More filters
Journal ArticleDOI

Extracellular electron transfer mechanisms between microorganisms and minerals

TL;DR: The molecular mechanisms that underlie the ability of microorganisms to exchange electrons, such as c-type cytochromes and microbial nanowires, with extracellular minerals and with microorganisms of the same or different species are discussed.
Journal ArticleDOI

Humic substances as fully regenerable electron acceptors in recurrently anoxic environments

TL;DR: In this paper, it was shown that humic substances serve as fully regenerable electron acceptors in recurrently anoxic environments such as peatlands, and they make up a significant fraction of the natural organic matter in terrestrial and aquatic environments.
Journal ArticleDOI

A flavin-based extracellular electron transfer mechanism in diverse Gram-positive bacteria.

TL;DR: A greater prevalence of EET-based growth capabilities is suggested and a previously underappreciated relevance for electrogenic bacteria across diverse environments, including host-associated microbial communities and infectious disease is established.
Journal ArticleDOI

Exoelectrogens: Recent Advances in Molecular Drivers Involved in Extracellular Electron Transfer and Strategies used to Improve it for Microbial Fuel Cell Applications

TL;DR: The latest information about the exoelectrogens and molecular drivers involved in extracellular electron transfer (EET) mechanisms are provided, and the important characteristics of electroactive biofilms are summarized.
Journal ArticleDOI

Microbial nanowires for bioenergy applications

TL;DR: Introducing nanowires, or nanowire mimetics, might improve other bioenergy strategies that rely on extracellular electron exchange, such as microbial electrosynthesis.
References
More filters
Journal ArticleDOI

Ferrozine---a new spectrophotometric reagent for iron

TL;DR: The ferroin group has been known to react as bidentate ligands with certain metal ions such as ferrous, cuprous, and cobaltous, to give colored complex species.
Journal ArticleDOI

Dissimilatory Fe(III) and Mn(IV) reduction.

TL;DR: The physiological characteristics of Geobacter species appear to explain why they have consistently been found to be the predominant Fe(III)- and Mn(IV)-reducing microorganisms in a variety of sedimentary environments.
Journal ArticleDOI

Extracellular electron transfer via microbial nanowires.

TL;DR: Results indicate that the pili of G. sulfurreducens might serve as biological nanowires, transferring electrons from the cell surface to the surface of Fe(iii) oxides, indicating possibilities for other unique cell-surface and cell–cell interactions, and for bioengineering of novel conductive materials.
Journal ArticleDOI

Shewanella secretes flavins that mediate extracellular electron transfer

TL;DR: In situ demonstration of flavin production, and sequestration at surfaces, requires the paradigm of soluble redox shuttles in geochemistry to be adjusted to include binding and modification of surfaces.
Related Papers (5)