scispace - formally typeset
Open AccessJournal ArticleDOI

Fluorescence and Optical Activity of Chiral CdTe Quantum Dots in Their Interaction with Amino Acids

Reads0
Chats0
TLDR
It is concluded that it is not only the chemistry of the amino acid ligand that affects both CD and PL but also the exact geometry of binding that modifies these properties, potentially enabling the design of chiral semiconductor QDs for chiroptic applications.
Abstract
Ligand-induced chirality in semiconducting nanocrystals has been the subject of extensive study in the past few years and shows potential applications in optics and biology. Yet, the origin of the chiroptical effect in semiconductor nanoparticles is still not fully understood. Here, we examine the effect of the interaction with amino acids on both the fluorescence and the optical activity of chiral semiconductor quantum dots (QDs). A significant fluorescence enhancement is observed for l/d-Cys-CdTe QDs upon interaction with all the tested amino acids, indicating suppression of nonradiative pathways as well as the passivation of surface trap sites brought via the interaction of the amino group with the CdTe QDs' surface. Heterochiral amino acids are shown to weaken the circular dichroism (CD) signal, which may be attributed to a different binding configuration of cysteine molecules on the QDs' surface. Furthermore, a red shift of both CD and fluorescence signals in l/d-Cys-CdTe QDs is only observed upon adding cysteine, while other tested amino acids do not exhibit such an effect. We speculate that the thiol group induces orbital hybridization of the highest occupied molecular orbital (HOMOs) of cysteine and the valence band of CdTe QDs, leading to the decrease of the energy band gap and a concomitant red shift of CD and fluorescence spectra. This is further verified by density functional theory calculations. Both the experimental and theoretical findings indicate that the addition of ligands that do not "directly" interact with the valence band (VB) of the QD (noncysteine moieties) changes the QD photophysical properties, as it probably modifies the way cysteine is bound to the surface. Hence, we conclude that it is not only the chemistry of the amino acid ligand that affects both CD and PL but also the exact geometry of binding that modifies these properties. Understanding the relationship between the QD's surface and chiral amino acid thus provides an additional perspective on the fundamental origin of induced chiroptical effects in semiconductor nanoparticles, potentially enabling us to optimize the design of chiral semiconductor QDs for chiroptic applications.

read more

Citations
More filters

Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields

TL;DR: In this paper, the unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio using DFT, MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set.
Journal ArticleDOI

Carbon-Based Quantum Dots with Solid-State Photoluminescent: Mechanism, Implementation, and Application.

TL;DR: This review summarizes the current understanding of theSolid-state PL of solid-state CQDs from the perspective of energy band theory and electronic transitions and the applications of CQD in the fields of light-emitting devices, anti-counterfeiting, fingerprint detection, etc., are proposed.
Journal ArticleDOI

Chiral carbon dots: synthesis, optical properties, and emerging applications

TL;DR: Carbon dots are luminescent carbonaceous nanoparticles that can be endowed with chiral properties, making them particularly interesting for biomedical applications due to their low cytotoxicity and facile synthesis as discussed by the authors .
Journal ArticleDOI

Chiral carbon dots: synthesis, optical properties, and emerging applications

TL;DR: Carbon dots are luminescent carbonaceous nanoparticles that can be endowed with chiral properties, making them particularly interesting for biomedical applications due to their low cytotoxicity and facile synthesis as discussed by the authors .
References
More filters
Journal ArticleDOI

Density‐functional thermochemistry. III. The role of exact exchange

TL;DR: In this article, a semi-empirical exchange correlation functional with local spin density, gradient, and exact exchange terms was proposed. But this functional performed significantly better than previous functionals with gradient corrections only, and fits experimental atomization energies with an impressively small average absolute deviation of 2.4 kcal/mol.
Journal ArticleDOI

Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields

TL;DR: In this article, the unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio using DFT, MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set.
Journal ArticleDOI

An all‐electron numerical method for solving the local density functional for polyatomic molecules

TL;DR: In this paper, a method for accurate and efficient local density functional calculations (LDF) on molecules is described and presented with results using fast convergent threedimensional numerical integrations to calculate the matrix elements occurring in the Ritz variation method.
Journal ArticleDOI

Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data

TL;DR: It is shown that the effective atomic C6 coefficients depend strongly on the bonding environment of an atom in a molecule, and the van der Waals radii and the damping function in the C6R(-6) correction method for density-functional theory calculations.
Journal ArticleDOI

Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals

TL;DR: In this article, the extinction coefficient per mole of nanocrystals at the first exitonic absorption peak, e.g., for high-quality CdTe, CdSe, and CdS, was found to be strongly dependent on the size of the nanocrystal, between a square and a cubic dependence.
Related Papers (5)