scispace - formally typeset
Journal ArticleDOI

From weak to strong interactions: A comprehensive analysis of the topological and energetic properties of the electron density distribution involving X–H⋯F–Y systems

Enrique Espinosa, +3 more
- 04 Sep 2002 - 
- Vol. 117, Iss: 12, pp 5529-5542
TLDR
In this paper, the topological and energetic properties of the electron density distribution ρ(r) of isolated pairwise H⋯F interaction have been theoretically calculated at several geometries and represented against the corresponding internuclear distances.
Abstract
The topological and energetic properties of the electron density distribution ρ(r) of the isolated pairwise H⋯F interaction have been theoretically calculated at several geometries (0.8<d<2.5 A) and represented against the corresponding internuclear distances. From long to short geometries, the results presented here lead to three characteristic regions, which correspond to three different interaction states. While the extreme regions are associated to pure closed-shell (CS) and shared-shell (SS) interactions, the middle one has been related to the redistribution of ρ(r) between those electronic states. The analysis carried out with this system has permitted to associate the transit region between pure CS and SS interactions to internuclear geometries involved in the building of the H–F bonding molecular orbital. A comparative analysis between the formation of this orbital and the behavior of some characteristic ρ(r) properties has indicated their intrinsic correspondence, leading to the definition of a bond degree parameter [BD=HCP/ρCP; HCP and ρCP being the total electron energy density and the electron density value at the H⋯F (3,−1) critical point]. Along with the isolated pairwise H⋯F interaction, 79 X–H⋯F–Y (neutral, positively and negatively charged) complexes have been also theoretically considered and analyzed in terms of relevant topological and energetic properties of ρ(r) found at their H⋯F critical points. In particular, the interaction energies of X–H⋯F–Y pure CS interactions have been estimated by using the bond degree parameter. On the other hand, the [F⋯H⋯F]− proton transfer geometry has been related to the local maximum of the electron kinetic energy density (GCP)max.

read more

Citations
More filters
Book ChapterDOI

The Pnicogen Bond in Review: Structures, Binding Energies, Bonding Properties, and Spin-Spin Coupling Constants of Complexes Stabilized by Pnicogen Bonds

TL;DR: In this paper, extensive ab initio MP2/aug’-cc-pVTZ studies have been carried out in our laboratories to determine the structures, binding energies, bonding properties, and EOM-CCSD spin-spin coupling constants of various series of complexes stabilized by pnicogen bonds.
Journal ArticleDOI

Pnicogen-hydride interaction between FH2X (X = P and As) and HM (M = ZnH, BeH, MgH, Li, and Na).

TL;DR: By comparison with some related systems, it is concluded that the pnicogen-hydride interactions are stronger than dihydrogen bonds and lithium-Hydride interactions.
Journal ArticleDOI

A DFT study on the physical adsorption of cyclophosphamide derivatives on the surface of fullerene C60 nanocage

TL;DR: According to the gCP-D3-ΔE(binding) binding energies and ΔH(adsorption) values at B3LYP level, it seems that the complexes 12 and 13 can be the most promising prodrug+carrier delivery systems.
Journal ArticleDOI

Experimental X-ray Charge Density Studies on the Binary Carbonyls Cr(CO)6, Fe(CO)5, and Ni(CO)4

TL;DR: A detailed comparison between the experimental results and theoretical results from previous work and from gas-phase and periodic DFT/B3LYP calculations shows excellent agreement, both on a qualitative and quantitative level.
References
More filters
Journal ArticleDOI

General atomic and molecular electronic structure system

TL;DR: A description of the ab initio quantum chemistry package GAMESS, which can be treated with wave functions ranging from the simplest closed‐shell case up to a general MCSCF case, permitting calculations at the necessary level of sophistication.
Journal ArticleDOI

Note on an Approximation Treatment for Many-Electron Systems

Chr. Møller, +1 more
- 01 Oct 1934 - 
TL;DR: In this article, a perturbation theory for treating a system of n electrons in which the Hartree-Fock solution appears as the zero-order approximation was developed, and it was shown by this development that the first order correction for the energy and the charge density of the system is zero.
Book

Atoms in molecules : a quantum theory

TL;DR: In this article, the quantum atom and the topology of the charge desnity of a quantum atom are discussed, as well as the mechanics of an atom in a molecule.
Journal ArticleDOI

Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets

TL;DR: In this paper, a modified basis set of supplementary diffuse s and p functions, multiple polarization functions (double and triple sets of d functions), and higher angular momentum polarization functions were defined for use with the 6.31G and 6.311G basis sets.
Related Papers (5)