scispace - formally typeset
Open AccessJournal ArticleDOI

Fundamentals of Wireless Information and Power Transfer: From RF Energy Harvester Models to Signal and System Designs

TLDR
This paper highlights three different energy harvester models, namely, one linear model and two nonlinear models, and shows how WIPT designs differ for each of them in single-user and multi-user deployments, and identifies the fundamental tradeoff between conveying information and power wirelessly.
Abstract
Radio waves carry both energy and information simultaneously. Nevertheless, radio-frequency (RF) transmissions of these quantities have traditionally been treated separately. Currently, the community is experiencing a paradigm shift in wireless network design, namely, unifying wireless transmission of information and power so as to make the best use of the RF spectrum and radiation as well as the network infrastructure for the dual purpose of communicating and energizing. In this paper, we review and discuss recent progress in laying the foundations of the envisioned dual purpose networks by establishing a signal theory and design for wireless information and power transmission (WIPT) and identifying the fundamental tradeoff between conveying information and power wirelessly. We start with an overview of WIPT challenges and technologies, namely, simultaneous WIPT (SWIPT), wirelessly powered communication networks (WPCNs), and wirelessly powered backscatter communication (WPBC). We then characterize energy harvesters and show how WIPT signal and system designs crucially revolve around the underlying energy harvester model. To that end, we highlight three different energy harvester models, namely, one linear model and two nonlinear models, and show how WIPT designs differ for each of them in single-user and multi-user deployments. Topics discussed include rate-energy region characterization, transmitter and receiver architectures, waveform design, modulation, beamforming and input distribution optimizations, resource allocation, and RF spectrum use. We discuss and check the validity of the different energy harvester models and the resulting signal theory and design based on circuit simulations, prototyping, and experimentation. We also point out numerous directions that are promising for future research.

read more

Citations
More filters
Journal ArticleDOI

Accessing From the Sky: A Tutorial on UAV Communications for 5G and Beyond

TL;DR: In this article, the authors give a tutorial overview of the recent advances in UAV communications to address the above issues, with an emphasis on how to integrate UAVs into the forthcoming fifth-generation (5G) and future cellular networks.
Journal ArticleDOI

Joint Active and Passive Beamforming Optimization for Intelligent Reflecting Surface Assisted SWIPT Under QoS Constraints

TL;DR: Simulation results demonstrate the effectiveness of employing multiple IRSs for enhancing the performance of SWIPT systems as well as the significant performance gains achieved by the proposed algorithms over benchmark schemes.
Posted Content

Accessing From The Sky: A Tutorial on UAV Communications for 5G and Beyond

TL;DR: This article gives a tutorial overview of the recent advances in UAV communications, with an emphasis on how to integrate UAVs into the forthcoming fifth-generation (5G) and future cellular networks.
Posted Content

A Survey of Multi-Access Edge Computing in 5G and Beyond: Fundamentals, Technology Integration, and State-of-the-Art

TL;DR: This survey provides a holistic overview of MEC technology and its potential use cases and applications, and outlines up-to-date researches on the integration of M EC with the new technologies that will be deployed in 5G and beyond.
Journal ArticleDOI

Interplay Between NOMA and Other Emerging Technologies: A Survey

TL;DR: A comprehensive survey of the interplay between NOMA and many existing wireless technologies and emerging ones including multiple-input multiple-output (MIMO), massive MIMO, millimeter wave communications, cognitive and cooperative communications, visible light communications, physical layer security, energy harvesting, wireless caching, and so on.
References
More filters
Book

Elements of information theory

TL;DR: The author examines the role of entropy, inequality, and randomness in the design of codes and the construction of codes in the rapidly changing environment.
Journal ArticleDOI

Capacity of Multi‐antenna Gaussian Channels

TL;DR: In this paper, the authors investigate the use of multiple transmitting and/or receiving antennas for single user communications over the additive Gaussian channel with and without fading, and derive formulas for the capacities and error exponents of such channels, and describe computational procedures to evaluate such formulas.
Journal ArticleDOI

MIMO Broadcasting for Simultaneous Wireless Information and Power Transfer

TL;DR: This paper studies a multiple-input multiple-output (MIMO) wireless broadcast system consisting of three nodes, where one receiver harvests energy and another receiver decodes information separately from the signals sent by a common transmitter, and all the transmitter and receivers may be equipped with multiple antennas.
Journal ArticleDOI

Wireless Networks With RF Energy Harvesting: A Contemporary Survey

TL;DR: This paper presents an overview of the RF-EHNs including system architecture, RF energy harvesting techniques, and existing applications, and explores various key design issues according to the network types, i.e., single-hop networks, multiantenna networks, relay networks, and cognitive radio networks.
Journal ArticleDOI

Capacity Limits of Optical Fiber Networks

TL;DR: In this article, the capacity limit of fiber-optic communication systems (or fiber channels?) is estimated based on information theory and the relationship between the commonly used signal to noise ratio and the optical signal-to-noise ratio is discussed.
Related Papers (5)