scispace - formally typeset
Search or ask a question

Showing papers in "IEEE Journal on Selected Areas in Communications in 2020"


Journal ArticleDOI
TL;DR: Reconfigurable intelligent surfaces (RISs) can be realized in different ways, which include (i) large arrays of inexpensive antennas that are usually spaced half of the wavelength apart; and (ii) metamaterial-based planar or conformal large surfaces whose scattering elements have sizes and inter-distances much smaller than the wavelength.
Abstract: Reconfigurable intelligent surfaces (RISs) are an emerging transmission technology for application to wireless communications. RISs can be realized in different ways, which include (i) large arrays of inexpensive antennas that are usually spaced half of the wavelength apart; and (ii) metamaterial-based planar or conformal large surfaces whose scattering elements have sizes and inter-distances much smaller than the wavelength. Compared with other transmission technologies, e.g., phased arrays, multi-antenna transmitters, and relays, RISs require the largest number of scattering elements, but each of them needs to be backed by the fewest and least costly components. Also, no power amplifiers are usually needed. For these reasons, RISs constitute a promising software-defined architecture that can be realized at reduced cost, size, weight, and power (C-SWaP design), and are regarded as an enabling technology for realizing the emerging concept of smart radio environments (SREs). In this paper, we (i) introduce the emerging research field of RIS-empowered SREs; (ii) overview the most suitable applications of RISs in wireless networks; (iii) present an electromagnetic-based communication-theoretic framework for analyzing and optimizing metamaterial-based RISs; (iv) provide a comprehensive overview of the current state of research; and (v) discuss the most important research issues to tackle. Owing to the interdisciplinary essence of RIS-empowered SREs, finally, we put forth the need of reconciling and reuniting C. E. Shannon’s mathematical theory of communication with G. Green’s and J. C. Maxwell’s mathematical theories of electromagnetism for appropriately modeling, analyzing, optimizing, and deploying future wireless networks empowered by RISs.

1,158 citations


Journal ArticleDOI
TL;DR: This paper develops a DRL based algorithm, in which the joint design is obtained through trial-and-error interactions with the environment by observing predefined rewards, in the context of continuous state and action, and obtains the comparable performance compared with two state-of-the-art benchmarks.
Abstract: Recently, the reconfigurable intelligent surface (RIS), benefited from the breakthrough on the fabrication of programmable meta-material, has been speculated as one of the key enabling technologies for the future six generation (6G) wireless communication systems scaled up beyond massive multiple input multiple output (Massive-MIMO) technology to achieve smart radio environments. Employed as reflecting arrays, RIS is able to assist MIMO transmissions without the need of radio frequency chains resulting in considerable reduction in power consumption. In this paper, we investigate the joint design of transmit beamforming matrix at the base station and the phase shift matrix at the RIS, by leveraging recent advances in deep reinforcement learning (DRL). We first develop a DRL based algorithm, in which the joint design is obtained through trial-and-error interactions with the environment by observing predefined rewards, in the context of continuous state and action. Unlike the most reported works utilizing the alternating optimization techniques to alternatively obtain the transmit beamforming and phase shifts, the proposed DRL based algorithm obtains the joint design simultaneously as the output of the DRL neural network. Simulation results show that the proposed algorithm is not only able to learn from the environment and gradually improve its behavior, but also obtains the comparable performance compared with two state-of-the-art benchmarks. It is also observed that, appropriate neural network parameter settings will improve significantly the performance and convergence rate of the proposed algorithm.

575 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigated the joint design of the beamformers and AN covariance matrix at the AP and the phase shifters at the RISs for maximization of the system sum-rate while limiting the maximum information leakage to the potential eavesdroppers.
Abstract: In this paper, intelligent reflecting surfaces (IRSs) are employed to enhance the physical layer security in a challenging radio environment. In particular, a multi-antenna access point (AP) has to serve multiple single-antenna legitimate users, which do not have line-of-sight communication links, in the presence of multiple multi-antenna potential eavesdroppers whose channel state information (CSI) is not perfectly known. Artificial noise (AN) is transmitted from the AP to deliberately impair the eavesdropping channels for security provisioning. We investigate the joint design of the beamformers and AN covariance matrix at the AP and the phase shifters at the IRSs for maximization of the system sum-rate while limiting the maximum information leakage to the potential eavesdroppers. To this end, we formulate a robust non-convex optimization problem taking into account the impact of the imperfect CSI of the eavesdropping channels. To address the non-convexity of the optimization problem, an efficient algorithm is developed by capitalizing on alternating optimization, a penalty-based approach, successive convex approximation, and semidefinite relaxation. Simulation results show that IRSs can significantly improve the system secrecy performance compared to conventional architectures without IRS. Furthermore, our results unveil that, for physical layer security, uniformly distributing the reflecting elements among multiple IRSs is preferable over deploying them at a single IRS.

552 citations


Journal ArticleDOI
TL;DR: In this article, the fundamental capacity limit of RIS-aided point-to-point multiple-input multiple-output (MIMO) communication systems with multi-antenna transmitter and receiver in general, by jointly optimizing the IRS reflection coefficients and the MIMO transmit covariance matrix, is characterized.
Abstract: Intelligent reflecting surface (IRS) is a promising solution to enhance the wireless communication capacity both cost-effectively and energy-efficiently, by properly altering the signal propagation via tuning a large number of passive reflecting units. In this paper, we aim to characterize the fundamental capacity limit of IRS-aided point-to-point multiple-input multiple-output (MIMO) communication systems with multi-antenna transmitter and receiver in general, by jointly optimizing the IRS reflection coefficients and the MIMO transmit covariance matrix. First, we consider narrowband transmission under frequency-flat fading channels, and develop an efficient alternating optimization algorithm to find a locally optimal solution by iteratively optimizing the transmit covariance matrix or one of the reflection coefficients with the others being fixed. Next, we consider capacity maximization for broadband transmission in a general MIMO orthogonal frequency division multiplexing (OFDM) system under frequency-selective fading channels, where transmit covariance matrices are optimized for different subcarriers while only one common set of IRS reflection coefficients is designed to cater to all the subcarriers. To tackle this more challenging problem, we propose a new alternating optimization algorithm based on convex relaxation to find a high-quality suboptimal solution. Numerical results show that our proposed algorithms achieve substantially increased capacity compared to traditional MIMO channels without the IRS, and also outperform various benchmark schemes. In particular, it is shown that with the proposed algorithms, various key parameters of the IRS-aided MIMO channel such as channel total power, rank, and condition number can be significantly improved for capacity enhancement.

447 citations


Journal ArticleDOI
TL;DR: Both theoretical analysis and numerical validations show that the RIS-based system can achieve good sum-rate performance by setting a reasonable size of the RIS and a small number of discrete phase shifts.
Abstract: Reconfigurable intelligent surfaces (RISs) have drawn considerable attention from the research community recently. RISs create favorable propagation conditions by controlling the phase shifts of reflected waves at the surface, thereby enhancing wireless transmissions. In this paper, we study a downlink multi-user system where the transmission from a multi-antenna base station (BS) to various users is achieved by an RIS reflecting the incident signals of the BS towards the users. Unlike most existing works, we consider the practical case where only a limited number of discrete phase shifts can be realized by a finite-sized RIS. A hybrid beamforming scheme is proposed and the sum-rate maximization problem is formulated. Specifically, continuous digital beamforming and discrete RIS-based analog beamforming are performed at the BS and the RIS, respectively, and an iterative algorithm is designed to solve this problem. Both theoretical analysis and numerical validations show that the RIS-based system can achieve good sum-rate performance by setting a reasonable size of the RIS and a small number of discrete phase shifts.

435 citations


Journal ArticleDOI
TL;DR: In this article, the authors survey three new multiple antenna technologies that can play key roles in beyond 5G networks: cell-free massive MIMO, beamspace massive mIMO and intelligent reflecting surfaces.
Abstract: Multiple antenna technologies have attracted much research interest for several decades and have gradually made their way into mainstream communication systems. Two main benefits are adaptive beamforming gains and spatial multiplexing, leading to high data rates per user and per cell, especially when large antenna arrays are adopted. Since multiple antenna technology has become a key component of the fifth-generation (5G) networks, it is time for the research community to look for new multiple antenna technologies to meet the immensely higher data rate, reliability, and traffic demands in the beyond 5G era. Radically new approaches are required to achieve orders-of-magnitude improvements in these metrics. There will be large technical challenges, many of which are yet to be identified. In this paper, we survey three new multiple antenna technologies that can play key roles in beyond 5G networks: cell-free massive MIMO, beamspace massive MIMO, and intelligent reflecting surfaces. For each of these technologies, we present the fundamental motivation, key characteristics, recent technical progresses, and provide our perspectives for future research directions. The paper is not meant to be a survey/tutorial of a mature subject, but rather serve as a catalyst to encourage more research and experiments in these multiple antenna technologies.

430 citations


Journal ArticleDOI
TL;DR: Simulation results demonstrate the effectiveness of employing multiple IRSs for enhancing the performance of SWIPT systems as well as the significant performance gains achieved by the proposed algorithms over benchmark schemes.
Abstract: Intelligent reflecting surface (IRS) is a new and revolutionizing technology for achieving spectrum and energy efficient wireless networks. By leveraging massive low-cost passive elements that are able to reflect radio-frequency (RF) signals with adjustable phase shifts, IRS can achieve high passive beamforming gains, which are particularly appealing for improving the efficiency of RF-based wireless power transfer. Motivated by the above, we study in this paper an IRS-assisted simultaneous wireless information and power transfer (SWIPT) system. Specifically, a set of IRSs are deployed to assist in the information/power transfer from a multi-antenna access point (AP) to multiple single-antenna information users (IUs) and energy users (EUs), respectively. We aim to minimize the transmit power at the AP via jointly optimizing its transmit precoders and the reflect phase shifts at all IRSs, subject to the quality-of-service (QoS) constraints at all users, namely, the individual signal-to-interference-plus-noise ratio (SINR) constraints at IUs and the energy harvesting constraints at EUs. However, this optimization problem is non-convex with intricately coupled variables, for which the existing alternating optimization approach is shown to be inefficient as the number of QoS constraints increases. To tackle this challenge, we first apply proper transformations on the QoS constraints and then propose an efficient iterative algorithm by applying the penalty-based optimization method. Moreover, by exploiting the short-range coverage of IRS, we further propose a more computationally efficient algorithm by optimizing the phase shifts at all IRSs in parallel. Simulation results demonstrate the effectiveness of employing multiple IRSs for enhancing the performance of SWIPT systems as well as the significant performance gains achieved by our proposed algorithms over benchmark schemes. The impact of IRS on the transmitter/receiver design for SWIPT is also unveiled.

414 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigated the beneficial role of RISs in MEC systems, where single-antenna devices may opt for offloading a fraction of their computational tasks to the edge computing node via a multi-ANTenna access point with the aid of an RIS.
Abstract: Computation off-loading in mobile edge computing (MEC) systems constitutes an efficient paradigm of supporting resource-intensive applications on mobile devices. However, the benefit of MEC cannot be fully exploited, when the communications link used for off-loading computational tasks is hostile. Fortunately, the propagation-induced impairments may be mitigated by intelligent reflecting surfaces (IRS), which are capable of enhancing both the spectral- and energy-efficiency. Specifically, an IRS comprises an IRS controller and a large number of passive reflecting elements, each of which may impose a phase shift on the incident signal, thus collaboratively improving the propagation environment. In this paper, the beneficial role of IRSs is investigated in MEC systems, where single-antenna devices may opt for off-loading a fraction of their computational tasks to the edge computing node via a multi-antenna access point with the aid of an IRS. Pertinent latency-minimization problems are formulated for both single-device and multi-device scenarios, subject to practical constraints imposed on both the edge computing capability and the IRS phase shift design. To solve this problem, the block coordinate descent (BCD) technique is invoked to decouple the original problem into two subproblems, and then the computing and communications settings are alternatively optimized using low-complexity iterative algorithms. It is demonstrated that our IRS-aided MEC system is capable of significantly outperforming the conventional MEC system operating without IRSs. Quantitatively, about 20 % computational latency reduction is achieved over the conventional MEC system in a single cell of a 300 m radius and 5 active devices, relying on a 5-antenna access point.

403 citations


Journal ArticleDOI
TL;DR: In this paper, an intelligent reflecting surface (IRS) is invoked for enhancing the energy harvesting performance of a simultaneous wireless information and power transfer (SWIPT) aided system, where a multiantenna aided base station (BS) communicates with several multi-antenna assisted information receivers (IRs), while guaranteeing the EE requirement of the energy receivers (ERs).
Abstract: An intelligent reflecting surface (IRS) is invoked for enhancing the energy harvesting performance of a simultaneous wireless information and power transfer (SWIPT) aided system. Specifically, an IRS-assisted SWIPT system is considered, where a multi-antenna aided base station (BS) communicates with several multi-antenna assisted information receivers (IRs), while guaranteeing the energy harvesting requirement of the energy receivers (ERs). To maximize the weighted sum rate (WSR) of IRs, the transmit precoding (TPC) matrices of the BS and passive phase shift matrix of the IRS should be jointly optimized. To tackle this challenging optimization problem, we first adopt the classic block coordinate descent (BCD) algorithm for decoupling the original optimization problem into several subproblems and alternately optimize the TPC matrices and the phase shift matrix. For each subproblem, we provide a low-complexity iterative algorithm, which is guaranteed to converge to the Karush-Kuhn-Tucker (KKT) point of each subproblem. The BCD algorithm is rigorously proved to converge to the KKT point of the original problem. We also conceive a feasibility checking method to study its feasibility. Our extensive simulation results confirm that employing IRSs in SWIPT beneficially enhances the system performance and the proposed BCD algorithm converges rapidly, which is appealing for practical applications.

308 citations


Journal ArticleDOI
TL;DR: This paper proposes a privacy-preserved data sharing framework for IIoTs, where multiple competing data consumers exist in different stages of the system, and provides for both algorithms a comprehensive consideration on privacy, data utility, bandwidth efficiency, payment, and rationality for data sharing.
Abstract: The effective physical data sharing has been facilitating the functionality of Industrial IoTs, which is believed to be one primary basis for Industry 4.0. These physical data, while providing pivotal information for multiple components of a production system, also bring in severe privacy issues for both workers and manufacturers, thus aggravating the challenges for data sharing. Current designs tend to simplify the behaviors of participants for better theoretical analysis, and they cannot properly handle the challenges in IIoTs where the behaviors are more complicated and correlated. Therefore, this paper proposes a privacy-preserved data sharing framework for IIoTs, where multiple competing data consumers exist in different stages of the system. The framework allows data contributors to share their contents upon requests. The uploaded contents will be perturbed to preserve the sensitive status of contributors. The differential privacy is adopted in the perturbation to guarantee the privacy preservation. Then the data collector will process and relay contents with subsequent data consumers. This data collector will gain both its own data utility and extra profits in data relay. Two algorithms are proposed for data sharing in different scenarios, based on whether the service provider will further process the contents to retain its exclusive utility. This work also provides for both algorithms a comprehensive consideration on privacy, data utility, bandwidth efficiency, payment, and rationality for data sharing. Finally, the evaluation on real-world datasets demonstrates the effectiveness of proposed methods, together with clues for data sharing towards Industry 4.0.

306 citations


Journal ArticleDOI
TL;DR: In this article, an IRS-aided single-user communication system and design the IRS training reflection matrix for channel estimation as well as the passive beamforming for data transmission, both subject to the new constraint of discrete phase shifts.
Abstract: Prior studies on intelligent reflecting surface (IRS) have mostly assumed perfect channel state information (CSI) available for designing the IRS passive beamforming as well as the continuously adjustable phase shift at each of its reflecting elements, which, however, have simplified two challenging issues for implementing IRS in practice, namely, its channel estimation and passive beamforming designs both under the constraint of discrete phase shifts. To address them, we consider in this paper an IRS-aided single-user communication system and design the IRS training reflection matrix for channel estimation as well as the passive beamforming for data transmission, both subject to the new constraint of discrete phase shifts. We show that the training reflection matrix design with discrete phase shifts greatly differs from that with continuous phase shifts, and the corresponding passive beamforming design should take into account the correlated IRS channel estimation errors due to discrete phase shifts. Moreover, a novel hierarchical training reflection design is proposed to progressively estimate IRS elements’ channels over multiple time blocks by exploiting the IRS-elements grouping and partition. Based on the resolved IRS channels in each block, we further design the progressive passive beamforming at the IRS with discrete phase shifts to improve the achievable rate for data transmission over the blocks. Extensive numerical results are presented, which demonstrate the significant performance improvement of proposed channel estimation and passive beamforming designs as compared to various benchmark schemes.

Journal ArticleDOI
TL;DR: In this paper, a system for serving paired power-domain non-orthogonal multiple access (NOMA) users by designing the passive beamforming weights at the reconfigurable intelligent surfaces (RISs) is proposed.
Abstract: Reconfigurable intelligent surfaces (RISs) constitute a promising performance enhancement for next-generation (NG) wireless networks in terms of enhancing both their spectral efficiency (SE) and energy efficiency (EE). We conceive a system for serving paired power-domain non-orthogonal multiple access (NOMA) users by designing the passive beamforming weights at the RISs. In an effort to evaluate the network performance, we first derive the best-case and worst-case of new channel statistics for characterizing the effective channel gains. Then, we derive the best-case and worst-case of our closed-form expressions derived both for the outage probability and for the ergodic rate of the prioritized user. For gleaning further insights, we investigate both the diversity orders of the outage probability and the high-signal-to-noise (SNR) slopes of the ergodic rate. We also derive both the SE and EE of the proposed network. Our analytical results demonstrate that the base station (BS)-user links have almost no impact on the diversity orders attained when the number of RISs is high enough. Numerical results are provided for confirming that: i) the high-SNR slope of the RIS-aided network is one; ii) the proposed RIS-aided NOMA network has superior network performance compared to its orthogonal counterpart.

Journal ArticleDOI
TL;DR: An RIS architecture is proposed to achieve amplitude-and-phase-varying modulation, which facilitates the design of multiple-input multiple-output (MIMO) quadrature amplitude modulation (QAM) transmission.
Abstract: Reconfigurable intelligent surface (RIS) is a new paradigm that has great potential to achieve cost-effective, energy-efficient information modulation for wireless transmission, by the ability to change the reflection coefficients of the unit cells of a programmable metasurface. Nevertheless, the electromagnetic responses of the RISs are usually only phase-adjustable, which considerably limits the achievable rate of RIS-based transmitters. In this paper, we propose an RIS architecture to achieve amplitude-and-phase-varying modulation, which facilitates the design of multiple-input multiple-output (MIMO) quadrature amplitude modulation (QAM) transmission. The hardware constraints of the RIS and their impacts on the system design are discussed and analyzed. Furthermore, the proposed approach is evaluated using our prototype which implements the RIS-based MIMO-QAM transmission over the air in real time.

Journal ArticleDOI
TL;DR: This paper forms the channel estimation problem in the RIS-assisted multiuser MIMO system as a matrix-calibration based matrix factorization task and proposes a novel message-passing based algorithm to factorize the cascaded channels.
Abstract: Reconfigurable intelligent surface (RIS) is envisioned to be an essential component of the paradigm for beyond 5G networks as it can potentially provide similar or higher array gains with much lower hardware cost and energy consumption compared with the massive multiple-input multiple-output (MIMO) technology. In this paper, we focus on one of the fundamental challenges, namely the channel acquisition, in a RIS-assisted multiuser MIMO system. The state-of-the-art channel acquisition approach in such a system with fully passive RIS elements estimates the cascaded transmitter-to-RIS and RIS-to-receiver channels by adopting excessively long training sequences. To estimate the cascaded channels with an affordable training overhead, we formulate the channel estimation problem in the RIS-assisted multiuser MIMO system as a matrix-calibration based matrix factorization task. By exploiting the information on the slow-varying channel components and the hidden channel sparsity, we propose a novel message-passing based algorithm to factorize the cascaded channels. Furthermore, we present an analytical framework to characterize the theoretical performance bound of the proposed estimator in the large-system limit. Finally, we conduct simulations to verify the high accuracy and efficiency of the proposed algorithm.

Journal ArticleDOI
TL;DR: This paper presents an efficient blockchain-assisted secure device authentication mechanism for cross-domain IIoT, where consortium blockchain is introduced to construct trust among different domains and Identity-based signature is exploited during the authentication process.
Abstract: Industrial Internet of Things (IIoT) is considered as one of the most promising revolutionary technologies to prompt smart manufacturing and increase productivity. With manufacturing being more complicated and sophisticated, an entire manufacturing process usually involves several different administrative IoT domains (e.g., factories). Devices from different domains collaborate on the same task, which raises great security and privacy concerns about device-to-device communications. Existing authentication approaches may result in heavy key management overhead or rely on a trusted third party. Thus, security and privacy issues during communication remain unsolved but imperative. In this paper, we present an efficient blockchain-assisted secure device authentication mechanism $\textsf{BASA}$ for cross-domain IIoT. Specifically, consortium blockchain is introduced to construct trust among different domains. Identity-based signature (IBS) is exploited during the authentication process. To preserve the privacy of devices, we design an identity management mechanism, which can realize that devices being authenticated remain anonymous. Besides, session keys between two parties are negotiated, which can secure the subsequent communications. Extensive experiments have been conducted to show the effectiveness and efficiency of the proposed mechanism.

Journal ArticleDOI
TL;DR: This paper combines deep reinforcement learning with a novel neural network structure based on graph convolutional networks, and proposes a new and efficient algorithm for automatic virtual network embedding that achieves best performance on most metrics compared with the existing state-of-the-art solutions.
Abstract: Virtual network embedding arranges virtual network services onto substrate network components. The performance of embedding algorithms determines the effectiveness and efficiency of a virtualized network, making it a critical part of the network virtualization technology. To achieve better performance, the algorithm needs to automatically detect the network status which is complicated and changes in a time-varying manner, and to dynamically provide solutions that can best fit the current network status. However, most existing algorithms fail to provide automatic embedding solutions in an acceptable running time. In this paper, we combine deep reinforcement learning with a novel neural network structure based on graph convolutional networks, and propose a new and efficient algorithm for automatic virtual network embedding. In addition, a parallel reinforcement learning framework is used in training along with a newly-designed multi-objective reward function, which has proven beneficial to the proposed algorithm for automatic embedding of virtual networks. Extensive simulation results under different scenarios show that our algorithm achieves best performance on most metrics compared with the existing state-of-the-art solutions, with upto 39.6% and 70.6% improvement on acceptance ratio and average revenue, respectively. Moreover, the results also demonstrate that the proposed solution possesses good robustness.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the passive beamforming and information transfer (PBIT) technique for multiuser multiple-input multiple-output (Mu-MIMO) systems with the aid of reconfigurable intelligent surfaces (RISs).
Abstract: This paper investigates the passive beamforming and information transfer (PBIT) technique for multiuser multiple-input multiple-output (Mu-MIMO) systems with the aid of reconfigurable intelligent surfaces (RISs), where the RISs enhance the primary communication via passive beamforming (P-BF) and at the same time deliver additional information by the on-off reflecting modulation (in which the RIS information is carried by the on/off state of each reflecting element). For the P-BF design, we propose to maximize the achievable user sum rate of the RIS-aided Mu-MIMO channel and formulate the problem as a two-step stochastic program. A sample average approximation (SAA) based iterative algorithm is developed for the efficient P-BF design of the considered scheme. To strike a balance between complexity and performance, we further propose a simplified P-BF algorithm by approximating the stochastic program as a deterministic alternating optimization problem. For the receiver design, the signal detection at the receiver is a bilinear estimation problem since the RIS information is multiplicatively modulated onto the reflected signals of the reflecting elements. To solve this bilinear estimation problem, we develop a turbo message passing (TMP) algorithm in which the factor graph associated with the problem is divided into two modules: one for the estimation of the user signals and the other for the estimation of the on-off state of each RIS element. The two modules are executed iteratively to yield a near-optimal low-complexity solution. Furthermore, we extend the design of the Mu-MIMO PBIT scheme from single-RIS to multi-RIS, by leveraging the similarity between the single-RIS and multi-RIS system models. Extensive simulation results are provided to demonstrate the advantages of our P-BF and receiver designs.

Journal ArticleDOI
TL;DR: An improved deep Q-network (DQN) algorithm is proposed to learn the resource allocation policy for the IoT edge computing system to improve the efficiency of resource utilization and has a better convergence performance than the original DQN algorithm.
Abstract: By leveraging mobile edge computing (MEC), a huge amount of data generated by Internet of Things (IoT) devices can be processed and analyzed at the network edge. However, the MEC system usually only has the limited virtual resources, which are shared and competed by IoT edge applications. Thus, we propose a resource allocation policy for the IoT edge computing system to improve the efficiency of resource utilization. The objective of the proposed policy is to minimize the long-term weighted sum of average completion time of jobs and average number of requested resources. The resource allocation problem in the MEC system is formulated as a Markov decision process (MDP). A deep reinforcement learning approach is applied to solve the problem. We also propose an improved deep Q-network (DQN) algorithm to learn the policy, where multiple replay memories are applied to separately store the experiences with small mutual influence. Simulation results show that the proposed algorithm has a better convergence performance than the original DQN algorithm, and the corresponding policy outperforms the other reference policies by lower completion time with fewer requested resources.

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a massive MIMO transmission scheme with full frequency reuse (FFR) for LEO satellite communication systems and exploited statistical channel state information (sCSI) to address the difficulty of obtaining instantaneous CSI at the transmitter.
Abstract: Low earth orbit (LEO) satellite communications are expected to be incorporated in future wireless networks, in particular 5G and beyond networks, to provide global wireless access with enhanced data rates. Massive multiple-input multiple-output (MIMO) techniques, though widely used in terrestrial communication systems, have not been applied to LEO satellite communication systems. In this paper, we propose a massive MIMO transmission scheme with full frequency reuse (FFR) for LEO satellite communication systems and exploit statistical channel state information (sCSI) to address the difficulty of obtaining instantaneous CSI (iCSI) at the transmitter. We first establish the massive MIMO channel model for LEO satellite communications and simplify the transmission designs via performing Doppler and delay compensations at user terminals (UTs). Then, we develop the low-complexity sCSI based downlink (DL) precoder and uplink (UL) receiver in closed-form, aiming to maximize the average signal-to-leakage-plus-noise ratio (ASLNR) and the average signal-to-interference-plus-noise ratio (ASINR), respectively. It is shown that the DL ASLNRs and UL ASINRs of all UTs reach their upper bounds under some channel condition. Motivated by this, we propose a space angle based user grouping (SAUG) algorithm to schedule the served UTs into different groups, where each group of UTs use the same time and frequency resource. The proposed algorithm is asymptotically optimal in the sense that the lower and upper bounds of the achievable rate coincide when the number of satellite antennas or UT groups is sufficiently large. Numerical results demonstrate that the proposed massive MIMO transmission scheme with FFR significantly enhances the data rate of LEO satellite communication systems. Notably, the proposed sCSI based precoder and receiver achieve the similar performance with the iCSI based ones that are often infeasible in practice.

Journal ArticleDOI
TL;DR: In this article, the authors propose a novel network model based on Graph Neural Network (GNN) that is able to understand the complex relationship between topology, routing, and input traffic to produce accurate estimates of the per-source/destination per-packet delay distribution and loss.
Abstract: Network modeling is a key enabler to achieve efficient network operation in future self-driving Software-Defined Networks. However, we still lack functional network models able to produce accurate predictions of Key Performance Indicators (KPI) such as delay, jitter or loss at limited cost. In this paper we propose RouteNet, a novel network model based on Graph Neural Network (GNN) that is able to understand the complex relationship between topology, routing, and input traffic to produce accurate estimates of the per-source/destination per-packet delay distribution and loss. RouteNet leverages the ability of GNNs to learn and model graph-structured information and as a result, our model is able to generalize over arbitrary topologies, routing schemes and traffic intensity. In our evaluation, we show that RouteNet is able to predict accurately the delay distribution (mean delay and jitter) and loss even in topologies, routing and traffic unseen in the training (worst case MRE = 15.4%). Also, we present several use cases where we leverage the KPI predictions of our GNN model to achieve efficient routing optimization and network planning.

Journal ArticleDOI
TL;DR: A new transmission protocol for wideband RIS-assisted single-input multiple-output (SIMO) orthogonal frequency division multiplexing (OFDM) communication systems, where each transmission frame is divided into multiple sub-frames to execute channel estimation simultaneously with passive beamforming.
Abstract: Reconfigurable intelligent surfaces (RISs) have recently emerged as an innovative technology for improving the coverage, throughput, and energy/spectrum efficiency of future wireless communications. In this paper, we propose a new transmission protocol for wideband RIS-assisted single-input multiple-output (SIMO) orthogonal frequency division multiplexing (OFDM) communication systems, where each transmission frame is divided into multiple sub-frames to execute channel estimation simultaneously with passive beamforming. As the training symbols are discretely distributed over multiple sub-frames, the channel state information (CSI) associated with RIS cannot be estimated at once. As such, we propose a new channel estimation method to progressively estimate the associated CSI over consecutive sub-frames, based on which the passive beamforming at the RIS is fine-tuned to improve the achievable rate for data transmission. In particular, during the channel training, the RIS plays two roles of embedding training reflection states for progressive channel estimation and performing passive beamforming for data transmission on the data tones. Based on the estimated CSI in each sub-frame, we formulate an optimization problem to maximize the average achievable rate by designing the passive beamforming at the RIS, which needs to balance the received signal power over different sub-carriers and different receive antennas. As the formulated problem is non-convex and thus difficult to solve optimally, we propose two efficient algorithms to find high-quality solutions. Simulation results validate the effectiveness of the proposed channel estimation and beamforming optimization methods. It is shown that the proposed joint channel estimation and passive beamforming scheme is able to drastically improve the average achievable rate and reduce the delay for data transmission as compared to existing schemes.

Journal ArticleDOI
TL;DR: This paper designs an RF sensing system for posture recognition based on reconfigurable intelligent surfaces (RISs) and proposes algorithms to solve the optimization problem, which can greatly improve the recognition accuracy.
Abstract: Using radio-frequency (RF) sensing techniques for human posture recognition has attracted growing interest due to its advantages of pervasiveness, contact-free observation, and privacy protection. Conventional RF sensing techniques are constrained by their radio environments, which limit the number of transmission channels to carry multi-dimensional information about human postures. Instead of passively adapting to the environment, in this paper, we design an RF sensing system for posture recognition based on reconfigurable intelligent surfaces (RISs). The proposed system can actively customize the environments to provide desirable propagation properties and diverse transmission channels. However, achieving high recognition accuracy requires the optimization of RIS configuration, which is a challenging problem. To tackle this challenge, we formulate the optimization problem, decompose it into two subproblems, and propose algorithms to solve them. Based on the developed algorithms, we implement the system and carry out practical experiments. Both simulation and experimental results verify the effectiveness of the designed algorithms and system. Compared to the random configuration and non-configurable environment cases, the designed system can greatly improve the recognition accuracy.

Journal ArticleDOI
TL;DR: Evaluation results show that DDQN-VNFPA can get improved network performance in terms of the reject number and reject ratio of Service Function Chain Requests, throughput, end-to-end delay, VNFI running time and load balancing compared with the algorithms in existing literatures.
Abstract: The emerging paradigm - Software-Defined Networking (SDN) and Network Function Virtualization (NFV) - makes it feasible and scalable to run Virtual Network Functions (VNFs) in commercial-off-the-shelf devices, which provides a variety of network services with reduced cost. Benefitting from centralized network management, lots of information about network devices, traffic and resources can be collected in SDN/NFV-enabled networks. Using powerful machine learning tools, algorithms can be designed in a customized way according to the collected information to efficiently optimize network performance. In this paper, we study the VNF placement problem in SDN/NFV-enabled networks, which is naturally formulated as a Binary Integer Programming (BIP) problem. Using deep reinforcement learning, we propose a Double Deep Q Network-based VNF Placement Algorithm (DDQN-VNFPA). Specifically, DDQN determines the optimal solution from a prohibitively large solution space and DDQN-VNFPA then places/releases VNF Instances (VNFIs) following a threshold-based policy. We evaluate DDQN-VNFPA with trace-driven simulations on a real-world network topology. Evaluation results show that DDQN-VNFPA can get improved network performance in terms of the reject number and reject ratio of Service Function Chain Requests (SFCRs), throughput, end-to-end delay, VNFI running time and load balancing compared with the algorithms in existing literatures.

Journal ArticleDOI
TL;DR: This paper considers the small-scale fading in the far-field, and model it as a zero-mean, spatially-stationary, and correlated Gaussian scalar random field, and develops a discrete representation for the field as a Fourier plane-wave series expansion.
Abstract: Imagine an array with a massive (possibly uncountably infinite) number of antennas in a compact space. We refer to a system of this sort as Holographic MIMO. Given the impressive properties of Massive MIMO, one might expect a holographic array to realize extreme spatial resolution, incredible energy efficiency, and unprecedented spectral efficiency. At present, however, its fundamental limits have not been conclusively established. A major challenge for the analysis and understanding of such a paradigm shift is the lack of mathematically tractable and numerically reproducible channel models that retain some semblance to the physical reality. Detailed physical models are, in general, too complex for tractable analysis. This paper aims to take a closer look at this interdisciplinary challenge. Particularly, we consider the small-scale fading in the far-field, and we model it as a zero-mean, spatially-stationary, and correlated Gaussian scalar random field. A physically-meaningful correlation is obtained by requiring that the random field be consistent with the scalar Helmholtz equation. This formulation leads directly to a rather simple and exact description of the three-dimensional small-scale fading as a Fourier plane-wave spectral representation. Suitably discretized, this yields a discrete representation for the field as a Fourier plane-wave series expansion, from which a computationally efficient way to generate samples of the small-scale fading over spatially-constrained compact spaces is developed. The connections with the conventional tools of linear systems theory and Fourier transform are thoroughly discussed.

Journal ArticleDOI
TL;DR: A deep reinforcement learning (DRL) based solution is proposed to determine an optimal charging scheduling policy for low-battery EVs and the solution with incremental update achieves much higher computation efficiency than conventional game-theoretical method in dynamic EV charging.
Abstract: Smart grid delivers power with two-way flows of electricity and information with the support of information and communication technologies. Electric vehicles (EVs) with rechargeable batteries can be powered by external sources of electricity from the grid, and thus charging scheduling that guides low-battery EVs to charging services is significant for service quality improvement of EV drivers. The revolution of communications and data analytics driven by massive data in smart grid brings many challenges as well as chances for EV charging scheduling, and how to schedule EV charging in a smart and resilient way has inevitably become a crucial problem. Toward this end, we in this paper leverage the techniques of software defined networking and vehicular edge computing to investigate a joint problem of fast charging station selection and EV route planning. Our objective is to minimize the total overhead from users’ perspective, including time and charging fares in the whole process, considering charging availability and electricity price fluctuation. A deep reinforcement learning (DRL) based solution is proposed to determine an optimal charging scheduling policy for low-battery EVs. Besides, in response to dynamic EV charging, we further develop a resilient EV charging strategy based on incremental update, with EV drivers’ user experience being well considered. Extensive simulations demonstrate that our proposed DRL-based solution obtains near-optimal EV charging overhead with good adaptivity, and the solution with incremental update achieves much higher computation efficiency than conventional game-theoretical method in dynamic EV charging.

Journal ArticleDOI
Jie Cui1, Lu Wei1, Hong Zhong1, Jing Zhang1, Yan Xu1, Lu Liu2 
TL;DR: In the proposed scheme, a roadside unit (RSU) can find the popular data by analyzing the encrypted requests sent from nearby vehicles without having to sacrifice the privacy of their download requests.
Abstract: With the advancements in social media and rising demand for real traffic information, the data shared in vehicular ad hoc networks (VANETs) indicate that the size and amount of requested data will continue increasing. Vehicles in the same area often have similar data downloading requests. If we ignore the common requests, the resource allocation efficiency of the VANET system will be quite low. Motivated by this fact, we propose an efficient and privacy-preserving data downloading scheme for VANETs, based on the edge computing concept. In the proposed scheme, a roadside unit (RSU) can find the popular data by analyzing the encrypted requests sent from nearby vehicles without having to sacrifice the privacy of their download requests. Further, the RSU caches the popular data in nearby qualified vehicles called edge computing vehicles (ECVs). If a vehicle wishes to download the popular data, it can download it directly from the nearby ECVs. This method increases the downloading efficiency of the system. The security analysis results show that the proposed scheme can resist multiple security attacks. The performance analysis results demonstrate that our scheme has reasonable computation and communication overhead. Finally, the OMNeT++ simulation results indicate that our scheme has good network performance.

Journal ArticleDOI
TL;DR: This paper gives the first attempt to explore user-level privacy leakage by the attack from a malicious server, and proposes a framework incorporating GAN with a multi- task discriminator, called multi-task GAN – Auxiliary Identification (mGAN-AI), which simultaneously discriminates category, reality, and client identity of input samples.
Abstract: Federated learning has emerged as an advanced privacy-preserving learning technique for mobile edge computing, where the model is trained in a decentralized manner by the clients, preventing the server from directly accessing those private data from the clients. This learning mechanism significantly challenges the attack from the server side. Although the state-of-the-art attacking techniques that incorporated the advance of Generative adversarial networks (GANs) could construct class representatives of the global data distribution among all clients, it is still challenging to distinguishably attack a specific client (i.e., user-level privacy leakage), which is a stronger privacy threat to precisely recover the private data from a specific client. To analyze the privacy leakage of federated learning, this paper gives the first attempt to explore user-level privacy leakage by the attack from a malicious server. We propose a framework incorporating GAN with a multi-task discriminator, called multi-task GAN - Auxiliary Identification (mGAN-AI), which simultaneously discriminates category, reality, and client identity of input samples. The novel discrimination on client identity enables the generator to recover user specified private data. Unlike existing works interfering the federated learning process, the proposed method works “invisibly” on the server side. Furthermore, considering the anonymization strategy for mitigating mGAN-AI, we propose a beforehand linkability attack which re-identifies the anonymized updates by associating the client representatives. A novel siamese network fusing the identification and verification models is developed for measuring the similarity of representatives. The experimental results demonstrate the effectiveness of the proposed approaches and the superior to the state-of-the-art.

Journal ArticleDOI
TL;DR: This article proposes a clustering-based two-layered (CBTL) algorithm to solve the JCTO problem offline, and designs a deep supervised learning architecture of the convolutional neural network (CNN) to make fast decisions online.
Abstract: In this article, we investigate the UAV-aided edge caching to assist terrestrial vehicular networks in delivering high-bandwidth content files. Aiming at maximizing the overall network throughput, we formulate a joint caching and trajectory optimization (JCTO) problem to make decisions on content placement, content delivery, and UAV trajectory simultaneously. As the decisions interact with each other and the UAV energy is limited, the formulated JCTO problem is intractable directly and timely. To this end, we propose a deep supervised learning scheme to enable intelligent edge for real-time decision-making in the highly dynamic vehicular networks. In specific, we first propose a clustering-based two-layered (CBTL) algorithm to solve the JCTO problem offline. With a given content placement strategy, we devise a time-based graph decomposition method to jointly optimize the content delivery and trajectory design, with which we then leverage the particle swarm optimization (PSO) algorithm to further optimize the content placement. We then design a deep supervised learning architecture of the convolutional neural network (CNN) to make fast decisions online. The network density and content request distribution with spatio-temporal dimensions are labeled as channeled images and input to the CNN-based model, and the results achieved by the CBTL algorithm are labeled as model outputs. With the CNN-based model, a function which maps the input network information to the output decision can be intelligently learnt to make timely inference and facilitate online decisions. We conduct extensive trace-driven experiments, and our results demonstrate both the efficiency of CBTL in solving the JCTO problem and the superior learning performance with the CNN-based model.

Journal ArticleDOI
TL;DR: In this paper, the authors proposed Generative Adversarial Network-powered Deep Distributional Q Network (GAN-DDQN) to learn the action-value distribution driven by minimizing the discrepancy between the estimated action value distribution and the target action value distributions.
Abstract: Network slicing is a key technology in 5G communications system. Its purpose is to dynamically and efficiently allocate resources for diversified services with distinct requirements over a common underlying physical infrastructure. Therein, demand-aware resource allocation is of significant importance to network slicing. In this paper, we consider a scenario that contains several slices in a radio access network with base stations that share the same physical resources (e.g., bandwidth or slots). We leverage deep reinforcement learning (DRL) to solve this problem by considering the varying service demands as the environment state and the allocated resources as the environment action . In order to reduce the effects of the annoying randomness and noise embedded in the received service level agreement (SLA) satisfaction ratio (SSR) and spectrum efficiency (SE), we primarily propose generative adversarial network-powered deep distributional Q network (GAN-DDQN) to learn the action-value distribution driven by minimizing the discrepancy between the estimated action-value distribution and the target action-value distribution. We put forward a reward-clipping mechanism to stabilize GAN-DDQN training against the effects of widely-spanning utility values. Moreover, we further develop Dueling GAN-DDQN, which uses a specially designed dueling generator, to learn the action-value distribution by estimating the state-value distribution and the action advantage function. Finally, we verify the performance of the proposed GAN-DDQN and Dueling GAN-DDQN algorithms through extensive simulations.

Journal ArticleDOI
TL;DR: In this article, the authors analyzed the optimal communication involving large intelligent surfaces (LIS) starting from electromagnetic arguments and derived simple but accurate analytical expressions for the link gain and available spatial degrees-of-freedom (DoF) are derived.
Abstract: This paper analyzes the optimal communication involving large intelligent surfaces (LIS) starting from electromagnetic arguments. Since the numerical solution of the corresponding eigenfunction problems is in general computationally prohibitive, simple but accurate analytical expressions for the link gain and available spatial degrees-of-freedom (DoF) are derived. It is shown that the achievable DoF and gain offered by the wireless link are determined only by geometric factors, and that the classical Friis’ formula is no longer valid in this scenario where the transmitter and receiver could operate in the near-field regime. Furthermore, results indicate that, contrarily to classical MIMO systems, when using LIS-based antennas DoF larger than 1 can be exploited even in strong line-of-sight (LOS) channel conditions, which corresponds to a significant increase in spatial capacity density, especially when working at millimeter waves.