scispace - formally typeset
Open AccessProceedings ArticleDOI

Going deeper with convolutions

TLDR
Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract
We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

read more

Content maybe subject to copyright    Report

Citations
More filters
Posted Content

Generative Adversarial Text to Image Synthesis

TL;DR: A novel deep architecture and GAN formulation is developed to effectively bridge advances in text and image modeling, translating visual concepts from characters to pixels.
Posted Content

cuDNN: Efficient Primitives for Deep Learning

TL;DR: A library similar in intent to BLAS, with optimized routines for deep learning workloads, that contains routines for GPUs, and similarly to the BLAS library, could be implemented for other platforms.
Proceedings ArticleDOI

PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization

TL;DR: PoseNet as mentioned in this paper uses a CNN to regress the 6-DOF camera pose from a single RGB image in an end-to-end manner with no need of additional engineering or graph optimisation.
Posted Content

Learning Structured Sparsity in Deep Neural Networks

TL;DR: The results show that for CIFAR-10, regularization on layer depth can reduce 20 layers of a Deep Residual Network to 18 layers while improve the accuracy from 91.25% to 92.60%, which is still slightly higher than that of original ResNet with 32 layers.
Proceedings ArticleDOI

ThiNet: A Filter Level Pruning Method for Deep Neural Network Compression

TL;DR: ThiNet is proposed, an efficient and unified framework to simultaneously accelerate and compress CNN models in both training and inference stages, and it is revealed that it needs to prune filters based on statistics information computed from its next layer, not the current layer, which differentiates ThiNet from existing methods.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Journal ArticleDOI

Gradient-based learning applied to document recognition

TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Journal ArticleDOI

Regression Shrinkage and Selection via the Lasso

TL;DR: A new method for estimation in linear models called the lasso, which minimizes the residual sum of squares subject to the sum of the absolute value of the coefficients being less than a constant, is proposed.
Book ChapterDOI

Microsoft COCO: Common Objects in Context

TL;DR: A new dataset with the goal of advancing the state-of-the-art in object recognition by placing the question of object recognition in the context of the broader question of scene understanding by gathering images of complex everyday scenes containing common objects in their natural context.
Related Papers (5)