scispace - formally typeset
Open AccessProceedings ArticleDOI

Going deeper with convolutions

TLDR
Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract
We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Posted Content

Deep Residual Learning for Image Recognition

TL;DR: This work presents a residual learning framework to ease the training of networks that are substantially deeper than those used previously, and provides comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth.
Book

Deep Learning

TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Journal ArticleDOI

ImageNet classification with deep convolutional neural networks

TL;DR: A large, deep convolutional neural network was trained to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes and employed a recently developed regularization method called "dropout" that proved to be very effective.
References
More filters
Posted Content

Improving neural networks by preventing co-adaptation of feature detectors

TL;DR: The authors randomly omits half of the feature detectors on each training case to prevent complex co-adaptations in which a feature detector is only helpful in the context of several other specific feature detectors.
Proceedings Article

Two-Stream Convolutional Networks for Action Recognition in Videos

TL;DR: This work proposes a two-stream ConvNet architecture which incorporates spatial and temporal networks and demonstrates that a ConvNet trained on multi-frame dense optical flow is able to achieve very good performance in spite of limited training data.
Proceedings ArticleDOI

Combining labeled and unlabeled data with co-training

TL;DR: A PAC-style analysis is provided for a problem setting motivated by the task of learning to classify web pages, in which the description of each example can be partitioned into two distinct views, to allow inexpensive unlabeled data to augment, a much smaller set of labeled examples.
Journal ArticleDOI

Closed-form solution of absolute orientation using unit quaternions

TL;DR: A closed-form solution to the least-squares problem for three or more paints is presented, simplified by use of unit quaternions to represent rotation.
Related Papers (5)