scispace - formally typeset
Journal ArticleDOI

GROMACS 3.0: a package for molecular simulation and trajectory analysis

Erik Lindahl, +2 more
- 01 Aug 2001 - 
- Vol. 7, Iss: 8, pp 306-317
TLDR
The design includes an extraction of virial and periodic boundary conditions from the loops over pairwise interactions, and special software routines to enable rapid calculation of x–1/2.
Abstract
GROMACS 3.0 is the latest release of a versatile and very well optimized package for molecular simulation. Much effort has been devoted to achieving extremely high performance on both workstations and parallel computers. The design includes an extraction of virial and periodic boundary conditions from the loops over pairwise interactions, and special software routines to enable rapid calculation of x–1/2. Inner loops are generated automatically in C or Fortran at compile time, with optimizations adapted to each architecture. Assembly loops using SSE and 3DNow! Multimedia instructions are provided for x86 processors, resulting in exceptional performance on inexpensive PC workstations. The interface is simple and easy to use (no scripting language), based on standard command line arguments with self-explanatory functionality and integrated documentation. All binary files are independent of hardware endian and can be read by versions of GROMACS compiled using different floating-point precision. A large collection of flexible tools for trajectory analysis is included, with output in the form of finished Xmgr/Grace graphs. A basic trajectory viewer is included, and several external visualization tools can read the GROMACS trajectory format. Starting with version 3.0, GROMACS is available under the GNU General Public License from http://www.gromacs.org.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation

TL;DR: A new implementation of the molecular simulation toolkit GROMACS is presented which now both achieves extremely high performance on single processors from algorithmic optimizations and hand-coded routines and simultaneously scales very well on parallel machines.
Journal ArticleDOI

GROMACS: Fast, flexible, and free

TL;DR: The software suite GROMACS (Groningen MAchine for Chemical Simulation) that was developed at the University of Groningen, The Netherlands, in the early 1990s is described, which is a very fast program for molecular dynamics simulation.
Journal ArticleDOI

GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers

TL;DR: GROMACS is one of the most widely used open-source and free software codes in chemistry, used primarily for dynamical simulations of biomolecules, and provides a rich set of calculation types.
Journal ArticleDOI

The MARTINI force field : Coarse grained model for biomolecular simulations

TL;DR: An improved and extended version of the coarse grained lipid model is presented, coined the MARTINI force field, based on the reproduction of partitioning free energies between polar and apolar phases of a large number of chemical compounds to reproduce the free energies of these chemical building blocks.
References
More filters

Numerical recipes in C

TL;DR: The Diskette v 2.06, 3.5''[1.44M] for IBM PC, PS/2 and compatibles [DOS] Reference Record created on 2004-09-07, modified on 2016-08-08.
Book

Computer simulation using particles

TL;DR: In this paper, a simulation program for particle-mesh force calculation is presented, based on a one-dimensional plasma model and a collisionless particle model, which is used to simulate collisionless particle models.
Journal ArticleDOI

Domain motions in bacteriophage T4 lysozyme: a comparison between molecular dynamics and crystallographic data.

TL;DR: A comparison of a series of extended molecular dynamics simulations of bacteriophage T4 lysozyme in solvent with X‐ray data is presented, revealing that the N‐terminal helix rotates together with either of these two domains.
Related Papers (5)