scispace - formally typeset
Open AccessJournal ArticleDOI

Gromacs 4.5

TLDR
A range of new simulation algorithms and features developed during the past 4 years are presented, leading up to the GROMACS 4.5 software package, which provides extremely high performance and cost efficiency for high-throughput as well as massively parallel simulations.
Abstract
Motivation: Molecular simulation has historically been a low-throughput technique, but faster computers and increasing amounts of genomic and structural data are changing this by enabling large-scale automated simulation of, for instance, many conformers or mutants of biomolecules with or without a range of ligands. At the same time, advances in performance and scaling now make it possible to model complex biomolecular interaction and function in a manner directly testable by experiment. These applications share a need for fast and efficient software that can be deployed on massive scale in clusters, web servers, distributed computing or cloud resources. Results: Here, we present a range of new simulation algorithms and features developed during the past 4 years, leading up to the GROMACS 4.5 software package. The software now automatically handles wide classes of biomolecules, such as proteins, nucleic acids and lipids, and comes with all commonly used force fields for these molecules built-in. GROMACS supports several implicit solvent models, as well as new free-energy algorithms, and the software now uses multithreading for efficient parallelization even on low-end systems, including windows-based workstations. Together with hand-tuned assembly kernels and state-of-the-art parallelization, this provides extremely high performance and cost efficiency for high-throughput as well as massively parallel simulations. Availability: GROMACS is an open source and free software available from http://www.gromacs.org. Contact: erik.lindahl@scilifelab.se Supplementary information:Supplementary data are available at Bioinformatics online.

read more

Citations
More filters
Journal ArticleDOI

GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers

TL;DR: GROMACS is one of the most widely used open-source and free software codes in chemistry, used primarily for dynamical simulations of biomolecules, and provides a rich set of calculation types.
Journal ArticleDOI

g_mmpbsa--a GROMACS tool for high-throughput MM-PBSA calculations.

TL;DR: A new tool, g_mmpbsa, which implements the MM-PBSA approach using subroutines written in-house or sourced from the GROMACS and APBS packages is described, and the calculated interaction energy of 37 structurally diverse HIV-1 protease inhibitor complexes is compared.
Journal ArticleDOI

Deep Potential Molecular Dynamics: A Scalable Model with the Accuracy of Quantum Mechanics

TL;DR: Deep potential molecular dynamics (DPMD) as discussed by the authors is based on a many-body potential and interatomic forces generated by a carefully crafted deep neural network trained with ab initio data.
Journal ArticleDOI

PyEMMA 2: A Software Package for Estimation, Validation, and Analysis of Markov Models.

TL;DR: The open-source Python package PyEMMA is presented, derived a systematic and accurate way to coarse-grain MSMs to few states and to illustrate the structures of the metastable states of the system.
References
More filters
Journal ArticleDOI

VMD: Visual molecular dynamics

TL;DR: VMD is a molecular graphics program designed for the display and analysis of molecular assemblies, in particular biopolymers such as proteins and nucleic acids, which can simultaneously display any number of structures using a wide variety of rendering styles and coloring methods.
Journal ArticleDOI

A smooth particle mesh Ewald method

TL;DR: It is demonstrated that arbitrary accuracy can be achieved, independent of system size N, at a cost that scales as N log(N), which is comparable to that of a simple truncation method of 10 A or less.
Journal ArticleDOI

Scalable molecular dynamics with NAMD

TL;DR: NAMD as discussed by the authors is a parallel molecular dynamics code designed for high-performance simulation of large biomolecular systems that scales to hundreds of processors on high-end parallel platforms, as well as tens of processors in low-cost commodity clusters, and also runs on individual desktop and laptop computers.
Journal ArticleDOI

GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation

TL;DR: A new implementation of the molecular simulation toolkit GROMACS is presented which now both achieves extremely high performance on single processors from algorithmic optimizations and hand-coded routines and simultaneously scales very well on parallel machines.
Journal ArticleDOI

Polymorphic transitions in single crystals: A new molecular dynamics method

TL;DR: In this paper, a new Lagrangian formulation is introduced to make molecular dynamics (MD) calculations on systems under the most general externally applied, conditions of stress, which is well suited to the study of structural transformations in solids under external stress and at finite temperature.
Related Papers (5)