scispace - formally typeset
Journal ArticleDOI

High-harmonic generation by resonant plasmon field enhancement

Seungchul Kim, +5 more
- 05 Jun 2008 - 
- Vol. 453, Iss: 7196, pp 757-760
Reads0
Chats0
TLDR
This work demonstrates a method of high-harmonic generation that requires no extra cavities by exploiting the local field enhancement induced by resonant plasmons within a metallic nanostructure consisting of bow-tie-shaped gold elements on a sapphire substrate.
Abstract
High-harmonic generation by focusing a femtosecond laser onto a gas is a well-known method of producing coherent extreme-ultraviolet (EUV) light. This nonlinear conversion process requires high pulse intensities, greater than 10(13) W cm(-2), which are not directly attainable using only the output power of a femtosecond oscillator. Chirped-pulse amplification enables the pulse intensity to exceed this threshold by incorporating several regenerative and/or multi-pass amplifier cavities in tandem. Intracavity pulse amplification (designed not to reduce the pulse repetition rate) also requires a long cavity. Here we demonstrate a method of high-harmonic generation that requires no extra cavities. This is achieved by exploiting the local field enhancement induced by resonant plasmons within a metallic nanostructure consisting of bow-tie-shaped gold elements on a sapphire substrate. In our experiment, the output beam emitted from a modest femtosecond oscillator (100-kW peak power, 1.3-nJ pulse energy and 10-fs pulse duration) is directly focused onto the nanostructure with a pulse intensity of only 10(11) W cm(-2). The enhancement factor exceeds 20 dB, which is sufficient to produce EUV wavelengths down to 47 nm by injection with an argon gas jet. The method could form the basis for constructing laptop-sized EUV light sources for advanced lithography and high-resolution imaging applications.

read more

Citations
More filters
Journal ArticleDOI

Plasmonics for extreme light concentration and manipulation.

TL;DR: The basic concepts behind plasmonics-enabled light concentration and manipulation are discussed, an attempt to capture the wide range of activities and excitement in this area is made, and possible future directions are speculated on.
Journal ArticleDOI

Antennas for light

TL;DR: Optical antennas are devices that convert freely propagating optical radiation into localized energy, and vice versa as mentioned in this paper, and hold promise for enhancing the performance and efficiency of photodetection, light emission and sensing.
Journal ArticleDOI

Controlling the synthesis and assembly of silver nanostructures for plasmonic applications

TL;DR: In plasmonics, the metal nanostructures can serve as antennas to convert light into localized electric fields (E-fields) or as waveguides to route light to desired locations with nanometer precision through a strong interaction between incident light and free electrons in the nanostructure.
Journal ArticleDOI

Gold nanorods and their plasmonic properties

TL;DR: This review presents a comprehensive overview of the flourishing field of Au nanorods in the past five years, focusing mainly on the approaches for the growth, shape and size tuning, functionalization, and assembly of Au Nanorods, as well as the methods for the preparation of their hybrid structures.
Journal ArticleDOI

Plasmon nano-optical tweezers

TL;DR: A review of plasmon-based optical traps can be found in this paper, which summarizes the recent advances in the emerging field and discusses the potential applications to bioscience and quantum optics.
References
More filters
Journal ArticleDOI

Plasma perspective on strong field multiphoton ionization.

TL;DR: During strong-field multiphoton ionization, a wave packet is formed each time the laser field passes its maximum value, and one important parameter which determines the strength of these effects is the rate at which the wave packet spreads in the direction perpendicular to the laser electric field.
Journal ArticleDOI

Compression of amplified chirped optical pulses

TL;DR: In this paper, the amplification and subsequent recompression of optical chirped pulses were demonstrated using a system which produces 1.06 μm laser pulses with pulse widths of 2 ps and energies at the millijoule level.
Journal ArticleDOI

Theory of high-harmonic generation by low-frequency laser fields.

TL;DR: A simple, analytic, and fully quantum theory of high-harmonic generation by low-frequency laser fields is presented and the exact quantum-mechanical formula for the harmonic cutoff that differs from the phenomenological law Ip+3.17Up is presented.
Journal ArticleDOI

Resonant optical antennas.

TL;DR: N nanometer-scale gold dipole antennas designed to be resonant at optical frequencies are fabricated, in contradiction to classical antenna theory but in qualitative accordance with computer simulations that take into account the finite metallic conductivity at optical frequency.
Book

Handbook of vibrational spectroscopy

TL;DR: The theory and practice of Vibrational Spectroscopy instrumentation for mid- and far-infrared spectroscopy is discussed in detail in this paper, along with a discussion of the application of VVS in agriculture.
Related Papers (5)