scispace - formally typeset
Journal ArticleDOI

High‐Temperature Proton Conducting Membranes Based on Perfluorinated Ionomer Membrane‐Ionic Liquid Composites

Marc Doyle, +2 more
- 01 Jan 2000 - 
- Vol. 147, Iss: 1, pp 34-37
TLDR
In this paper, perfluorinated ionomer membranes such as the Nafion membrane can be swollen with ionic liquids giving composite free standing membranes with excellent stability and proton conductivity in this temperature range while retaining the low volatility of the ionic liquid.
Abstract
Composite membranes that exhibit fast proton transport at elevated temperatures are needed for proton‐exchange‐membrane fuel cells and other electrochemical devices operating in the 100 to 200°C range. Traditional water‐swollen proton conducting membranes such as the Nafion membrane suffer from the volatility of water in this temperature range leading to a subsequent drop in conductivity. Here we demonstrate that perfluorinated ionomer membranes such as the Nafion membrane can be swollen with ionic liquids giving composite free‐standing membranes with excellent stability and proton conductivity in this temperature range while retaining the low volatility of the ionic liquid. Ionic conductivities in excess of 0.1 S/cm at 180°C have been demonstrated using the ionic liquid 1-butyl, 3-methyl imidazolium trifluoromethane sulfonate. Comparisons between the ionic‐liquid‐swollen membrane and the neat liquid itself indicate substantial proton mobility in these composites. © 2000 The Electrochemical Society. All rights reserved.

read more

Citations
More filters
Journal ArticleDOI

Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100 °C

TL;DR: In this article, a review of the area encompassing modified PFSA membranes, alternative sulfonated polymer and their composite membranes, and acid−base complex membranes is presented. But the authors do not discuss the performance of the composite membranes.
Journal ArticleDOI

Application of Ionic Liquids to Energy Storage and Conversion Materials and Devices

TL;DR: Various application of ILs are reviewed by focusing on their use as electrolyte materials for Li/Na ion batteries, Li-sulfur batteries,Li-oxygen batteries, and nonhumidifiedfuel cells and as carbon precursors for electrode catalysts of fuel cells and electrode materials for batteries and supercapacitors.
Journal ArticleDOI

High temperature PEM fuel cells

TL;DR: A review of high temperature PEM fuel cells (HT-PEMFCs) from the perspective of HT-specific materials, designs, and testing/diagnostics is provided in this paper.
Journal ArticleDOI

Pulsed-Gradient Spin−Echo 1H and 19F NMR Ionic Diffusion Coefficient, Viscosity, and Ionic Conductivity of Non-Chloroaluminate Room-Temperature Ionic Liquids

TL;DR: In this paper, thermal properties, density, self-diffusion coefficient of the anions and cations, viscosity, and ionic conductivity were measured for these ionic liquids in wide temperature ranges.
Journal ArticleDOI

Polymer membranes for high temperature proton exchange membrane fuel cell : recent advances and challenges

TL;DR: In this article, a review examines the inspiration for high temperature proton exchange membrane fuel cells (PEMFCs) development, the technological constraints, and recent advances, and a detailed discussion of the synthesis of polymer, membrane fabrication and physicochemical characterizations is provided.
Related Papers (5)