scispace - formally typeset
Journal ArticleDOI

Highly active oxide photocathode for photoelectrochemical water reduction

TLDR
A highly active photocathode for solar H(2) production is presented, consisting of electrodeposited cuprous oxide, which was protected against photocathodic decomposition in water by nanolayers of Al-doped zinc oxide and titanium oxide and activated for hydrogen evolution with electroDeposited Pt nanoparticles.
Abstract
A clean and efficient way to overcome the limited supply of fossil fuels and the greenhouse effect is the production of hydrogen fuel from sunlight and water through the semiconductor/water junction of a photoelectrochemical cell, where energy collection and water electrolysis are combined into a single semiconductor electrode. We present a highly active photocathode for solar H(2) production, consisting of electrodeposited cuprous oxide, which was protected against photocathodic decomposition in water by nanolayers of Al-doped zinc oxide and titanium oxide and activated for hydrogen evolution with electrodeposited Pt nanoparticles. The roles of the different surface protection components were investigated, and in the best case electrodes showed photocurrents of up to -7.6 mA cm(-2) at a potential of 0 V versus the reversible hydrogen electrode at mild pH. The electrodes remained active after 1 h of testing, cuprous oxide was found to be stable during the water reduction reaction and the Faradaic efficiency was estimated to be close to 100%.

read more

Citations
More filters
Journal ArticleDOI

Electron trapping induced electrostatic adsorption of cations: a general factor leading to photoactivity decay of nanostructured TiO2

TL;DR: In this paper, a mechanism of electron trapping induced electrostatic adsorption of electrolyte cations (ETIEA) is proposed to explain the general photoactivity decay of nanostructured TiO2 electrodes, usually occurring during the initial several minutes of photoelectrochemical (PEC) processes.
Journal ArticleDOI

Amorphous Phosphorus-Doped Cobalt Sulfide Modified on Silicon Pyramids for Efficient Solar Water Reduction

TL;DR: Cobalt sulfide (CoS x) functioned as a co-catalyst to accelerate the kinetics of photogenerated electrons on Si photocathode, leading to the enhancement of solar hydrogen evolution efficiency by doping phosphorus heteroatoms, showing an improved catalytic activity because of superior surface area and quantity of active sites.
Journal ArticleDOI

Electrochemical Doping of Compact TiO2 Thin Layers

TL;DR: In this paper, the authors investigated the electrochemical n-doping of dense thin films of TiO2 (anatase) by proton insertion from acidic aqueous electrolyte solution.
Journal ArticleDOI

Turning Earth Abundant Kesterite-Based Solar Cells Into Efficient Protected Water-Splitting Photocathodes

TL;DR: In this article, conformal atomic layer deposition (ALD)-deposited TiO2 has been used as photocathodes for water splitting in highly acidic conditions (pH < 1), achieving stability with no detected degradation and with current density levels similar to photovoltaic productivities.
References
More filters
Journal Article

Photoelectrochemical cells : Materials for clean energy

Michael Grätzel
- 01 Jan 2001 - 
TL;DR: In this paper, the authors look into the historical background, and present status and development prospects for photoelectrochemical cells, based on nanocrystalline materials and conducting polymer films.
Journal ArticleDOI

A Monolithic Photovoltaic-Photoelectrochemical Device for Hydrogen Production via Water Splitting

TL;DR: Direct water electrolysis was achieved with a novel, integrated, monolithic photoelectrochemical-photovoltaic design that splits water directly upon illumination; light is the only energy input.
Journal ArticleDOI

Cu2O as a photocatalyst for overall water splitting under visible light irradiation

TL;DR: In this paper, the photocatalytic water splitting on Cu2O powder proceeds without any noticeable decrease in the activity for more than 1900 h. The authors investigated the decomposition of water into H2 and O2 under visible light irradiation.
Journal ArticleDOI

High Density n-Si/n-TiO2 Core/Shell Nanowire Arrays with Enhanced Photoactivity

TL;DR: It is observed that highly dense Si/TiO(2) core/shell nanowire arrays enhanced the photocurrent by 2.5 times compared to planar Si/ TiO( 2) structure due to their low reflectance and high surface area.
Related Papers (5)