scispace - formally typeset
Journal ArticleDOI

Highly active oxide photocathode for photoelectrochemical water reduction

TLDR
A highly active photocathode for solar H(2) production is presented, consisting of electrodeposited cuprous oxide, which was protected against photocathodic decomposition in water by nanolayers of Al-doped zinc oxide and titanium oxide and activated for hydrogen evolution with electroDeposited Pt nanoparticles.
Abstract
A clean and efficient way to overcome the limited supply of fossil fuels and the greenhouse effect is the production of hydrogen fuel from sunlight and water through the semiconductor/water junction of a photoelectrochemical cell, where energy collection and water electrolysis are combined into a single semiconductor electrode. We present a highly active photocathode for solar H(2) production, consisting of electrodeposited cuprous oxide, which was protected against photocathodic decomposition in water by nanolayers of Al-doped zinc oxide and titanium oxide and activated for hydrogen evolution with electrodeposited Pt nanoparticles. The roles of the different surface protection components were investigated, and in the best case electrodes showed photocurrents of up to -7.6 mA cm(-2) at a potential of 0 V versus the reversible hydrogen electrode at mild pH. The electrodes remained active after 1 h of testing, cuprous oxide was found to be stable during the water reduction reaction and the Faradaic efficiency was estimated to be close to 100%.

read more

Citations
More filters
Journal ArticleDOI

Photocatalysis: From Fundamental Principles to Materials and Applications

TL;DR: In this article, the authors summarize the recent efforts from a broad materia, including conventional semiconductors and emerging photoelectronic materials such as nanoscale plasmonic metal particles, quantum dots, and 2D materials.
Journal ArticleDOI

Defect Tolerant Semiconductors for Solar Energy Conversion

TL;DR: Theoretical calculations demonstrate that Cu3N with antibonding valence band maximum has shallow intrinsic defects and no surface states, in contrast to GaN with bonding valenceBand maximum, defining a class of defect-tolerant semiconductors for solar energy conversion applications.
Journal ArticleDOI

Review on various strategies for enhancing photocatalytic activity of graphene based nanocomposites for water purification

TL;DR: An overview of the various works done on the utilization of graphene-based photocatalytic systems in water purification and especially focusing on the strength of GAs in water disinfection can be found in this paper.
Journal ArticleDOI

A cuprous oxide–reduced graphene oxide (Cu2O–rGO) composite photocatalyst for hydrogen generation: employing rGO as an electron acceptor to enhance the photocatalytic activity and stability of Cu2O

TL;DR: Photocorrosion, that causes rapid deactivation of Cu(2)O photocatalysts, was addressed by incorporating this oxide in a composite with reduced graphene oxide which acts as an electron acceptor to extract photogenerated electrons from Cu( 2)O.
Journal ArticleDOI

Imaging photogenerated charge carriers on surfaces and interfaces of photocatalysts with surface photovoltage microscopy

TL;DR: The fundamental principle and development of the spatially resolved SPV technique and its application in photocatalysis are highlighted, focusing on understanding the nature of charge separation and providing insights into the rational design of highly efficient photocatalytic systems.
References
More filters
Journal Article

Photoelectrochemical cells : Materials for clean energy

Michael Grätzel
- 01 Jan 2001 - 
TL;DR: In this paper, the authors look into the historical background, and present status and development prospects for photoelectrochemical cells, based on nanocrystalline materials and conducting polymer films.
Journal ArticleDOI

A Monolithic Photovoltaic-Photoelectrochemical Device for Hydrogen Production via Water Splitting

TL;DR: Direct water electrolysis was achieved with a novel, integrated, monolithic photoelectrochemical-photovoltaic design that splits water directly upon illumination; light is the only energy input.
Journal ArticleDOI

Cu2O as a photocatalyst for overall water splitting under visible light irradiation

TL;DR: In this paper, the photocatalytic water splitting on Cu2O powder proceeds without any noticeable decrease in the activity for more than 1900 h. The authors investigated the decomposition of water into H2 and O2 under visible light irradiation.
Journal ArticleDOI

High Density n-Si/n-TiO2 Core/Shell Nanowire Arrays with Enhanced Photoactivity

TL;DR: It is observed that highly dense Si/TiO(2) core/shell nanowire arrays enhanced the photocurrent by 2.5 times compared to planar Si/ TiO( 2) structure due to their low reflectance and high surface area.
Related Papers (5)