scispace - formally typeset
Journal ArticleDOI

Highly active oxide photocathode for photoelectrochemical water reduction

TLDR
A highly active photocathode for solar H(2) production is presented, consisting of electrodeposited cuprous oxide, which was protected against photocathodic decomposition in water by nanolayers of Al-doped zinc oxide and titanium oxide and activated for hydrogen evolution with electroDeposited Pt nanoparticles.
Abstract
A clean and efficient way to overcome the limited supply of fossil fuels and the greenhouse effect is the production of hydrogen fuel from sunlight and water through the semiconductor/water junction of a photoelectrochemical cell, where energy collection and water electrolysis are combined into a single semiconductor electrode. We present a highly active photocathode for solar H(2) production, consisting of electrodeposited cuprous oxide, which was protected against photocathodic decomposition in water by nanolayers of Al-doped zinc oxide and titanium oxide and activated for hydrogen evolution with electrodeposited Pt nanoparticles. The roles of the different surface protection components were investigated, and in the best case electrodes showed photocurrents of up to -7.6 mA cm(-2) at a potential of 0 V versus the reversible hydrogen electrode at mild pH. The electrodes remained active after 1 h of testing, cuprous oxide was found to be stable during the water reduction reaction and the Faradaic efficiency was estimated to be close to 100%.

read more

Citations
More filters
Journal ArticleDOI

Efficient photoelectrochemical water splitting over anodized p-type NiO porous films.

TL;DR: The NiO/Al2O3 and NiO films fabricated using the alkaline anodization process produced 12 and 6 times as much hydrogen, respectively, as those fabricated using commercial NiO nanoparticles.
Journal ArticleDOI

A solution-processed, mercaptoacetic acid-engineered CdSe quantum dot photocathode for efficient hydrogen production under visible light irradiation

TL;DR: A mechanistic study reveals that the exceptional performance of the photocathode is derived from the efficient hole transfer process, which is unprecedented in the field of sensitized photocathodes for H2 production.
Journal ArticleDOI

Morphology Control and Photocatalysis Enhancement by in Situ Hybridization of Cuprous Oxide with Nitrogen-Doped Carbon Quantum Dots

TL;DR: It is demonstrated that the excellent photocatalytic performance of N-CDs/Cu2O composites can be attributed to the highly roughened structure and the suppression of electron-hole recombination as a result of the introduction of N -CDs.
Journal ArticleDOI

Precious-metal free photoelectrochemical water splitting with immobilised molecular Ni and Fe redox catalysts

TL;DR: Splitting water into hydrogen and oxygen with 3d transition metal molecular catalysts and light has been accomplished.
Journal ArticleDOI

Surface Passivation of TiO2 Nanowires Using a Facile Precursor-Treatment Approach for Photoelectrochemical Water Oxidation

TL;DR: In this paper, a facile precursor-treatment approach for effective surface passivation of rutile TiO2 nanowire photoanode was developed to improve its performance in photoelectrochemical (PEC) water oxidation.
References
More filters
Journal Article

Photoelectrochemical cells : Materials for clean energy

Michael Grätzel
- 01 Jan 2001 - 
TL;DR: In this paper, the authors look into the historical background, and present status and development prospects for photoelectrochemical cells, based on nanocrystalline materials and conducting polymer films.
Journal ArticleDOI

A Monolithic Photovoltaic-Photoelectrochemical Device for Hydrogen Production via Water Splitting

TL;DR: Direct water electrolysis was achieved with a novel, integrated, monolithic photoelectrochemical-photovoltaic design that splits water directly upon illumination; light is the only energy input.
Journal ArticleDOI

Cu2O as a photocatalyst for overall water splitting under visible light irradiation

TL;DR: In this paper, the photocatalytic water splitting on Cu2O powder proceeds without any noticeable decrease in the activity for more than 1900 h. The authors investigated the decomposition of water into H2 and O2 under visible light irradiation.
Journal ArticleDOI

High Density n-Si/n-TiO2 Core/Shell Nanowire Arrays with Enhanced Photoactivity

TL;DR: It is observed that highly dense Si/TiO(2) core/shell nanowire arrays enhanced the photocurrent by 2.5 times compared to planar Si/ TiO( 2) structure due to their low reflectance and high surface area.
Related Papers (5)