scispace - formally typeset
Journal ArticleDOI

Homogeneous large-area graphene layer growth on 6H-SiC(0001)

TLDR
In this article, large-area graphene monolayers were successfully prepared ex situ on 6H-SiC(0001) and the results are compared with those from a sample cut from the same wafer and prepared by in situ heating.
Abstract
Homogeneous large-area graphene monolayers were successfully prepared ex situ on 6H-SiC(0001). The samples have been studied systematically and the results are compared with those from a sample cut from the same wafer and prepared by in situ heating. The formation of smaller graphene flakes was found on the in situ prepared sample, which is in line with earlier observations. Distinctly different results are observed from the ex situ graphene layers of different thicknesses, which are proposed as a guideline for determining graphene growth. Recorded C 1s spectra consisted of three components: bulk SiC, graphene (G), and interface (I), the latter being a 6 root 3 layer. Extracted intensity ratios of G/I were found to give a good estimate of the thickness of graphene. Differences are also revealed in micro low energy electron diffraction images and electron reflectivity curves. The diffraction patterns were distinctly different from a monolayer thickness up to three layers. At a larger thickness only the graphitelike spot was visible. The electron reflectivity curve showed a nice oscillation behavior with kinetic energy and as a function of the number of graphene layers. The graphene sheets prepared were found to be very inert and the interface between the substrate and the layer(s) was found to be quite abrupt. No free Si could be detected in or on the graphene layers or at the interface.

read more

Citations
More filters
Journal ArticleDOI

A roadmap for graphene

TL;DR: This work reviews recent progress in graphene research and in the development of production methods, and critically analyse the feasibility of various graphene applications.
Journal ArticleDOI

Graphene: The New Two-Dimensional Nanomaterial

TL;DR: The status of graphene research is presented, which includes aspects related to synthesis, characterization, structure, and properties.
Journal ArticleDOI

Raman spectroscopy of graphene-based materials and its applications in related devices.

TL;DR: The essential Raman scattering processes of the entire first- and second-order modes in intrinsic graphene are described and the extensive capabilities of Raman spectroscopy for the investigation of the fundamental properties of graphene under external perturbations are described.
Journal ArticleDOI

Graphene: Synthesis and applications

TL;DR: Graphene has been attracting enormous attention in the scientific community as discussed by the authors, since the demonstration of its easy isolation by the exfoliation of graphite in 2004 by Novoselov, Geim and co-workers.
Journal ArticleDOI

Carbide‐Derived Carbons – From Porous Networks to Nanotubes and Graphene

TL;DR: Carbide-derived carbons (CDCs) as discussed by the authors are a large family of carbon materials derived from carbide precursors that are transformed into pure carbon via physical (e.g., thermal decomposition) or chemical processes.
Related Papers (5)