scispace - formally typeset
Open AccessProceedings ArticleDOI

In-Datacenter Performance Analysis of a Tensor Processing Unit

Reads0
Chats0
TLDR
The Tensor Processing Unit (TPU) as discussed by the authors is a custom ASIC deployed in datacenters since 2015 that accelerates the inference phase of neural networks (NN) using a 65,536 8-bit MAC matrix multiply unit that offers a peak throughput of 92 TeraOps/second (TOPS).
Abstract
Many architects believe that major improvements in cost-energy-performance must now come from domain-specific hardware. This paper evaluates a custom ASIC---called a Tensor Processing Unit (TPU) --- deployed in datacenters since 2015 that accelerates the inference phase of neural networks (NN). The heart of the TPU is a 65,536 8-bit MAC matrix multiply unit that offers a peak throughput of 92 TeraOps/second (TOPS) and a large (28 MiB) software-managed on-chip memory. The TPU's deterministic execution model is a better match to the 99th-percentile response-time requirement of our NN applications than are the time-varying optimizations of CPUs and GPUs that help average throughput more than guaranteed latency. The lack of such features helps explain why, despite having myriad MACs and a big memory, the TPU is relatively small and low power. We compare the TPU to a server-class Intel Haswell CPU and an Nvidia K80 GPU, which are contemporaries deployed in the same datacenters. Our workload, written in the high-level TensorFlow framework, uses production NN applications (MLPs, CNNs, and LSTMs) that represent 95% of our datacenters' NN inference demand. Despite low utilization for some applications, the TPU is on average about 15X -- 30X faster than its contemporary GPU or CPU, with TOPS/Watt about 30X -- 80X higher. Moreover, using the CPU's GDDR5 memory in the TPU would triple achieved TOPS and raise TOPS/Watt to nearly 70X the GPU and 200X the CPU.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Convergence of Edge Computing and Deep Learning: A Comprehensive Survey

TL;DR: By consolidating information scattered across the communication, networking, and DL areas, this survey can help readers to understand the connections between enabling technologies while promoting further discussions on the fusion of edge intelligence and intelligent edge, i.e., Edge DL.
Proceedings ArticleDOI

Streaming End-to-end Speech Recognition for Mobile Devices

TL;DR: This work describes its efforts at building an E2E speech recog-nizer using a recurrent neural network transducer and finds that the proposed approach can outperform a conventional CTC-based model in terms of both latency and accuracy.
Journal ArticleDOI

Unified rational protein engineering with sequence-based deep representation learning

TL;DR: Deep learning is applied to unlabeled amino-acid sequences to distill the fundamental features of a protein into a statistical representation that is semantically rich and structurally, evolutionarily and biophysically grounded and broadly applicable to unseen regions of sequence space.
Posted Content

Big Transfer (BiT): General Visual Representation Learning

TL;DR: By combining a few carefully selected components, and transferring using a simple heuristic, Big Transfer achieves strong performance on over 20 datasets and performs well across a surprisingly wide range of data regimes -- from 1 example per class to 1M total examples.
Journal ArticleDOI

Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices

TL;DR: Eyeriss v2 as mentioned in this paper is a DNN accelerator architecture designed for running compact and sparse DNNs, which can process sparse data directly in the compressed domain for both weights and activations and therefore is able to improve both processing speed and energy efficiency with sparse models.
References
More filters
Proceedings ArticleDOI

Going deeper with convolutions

TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Journal ArticleDOI

ImageNet classification with deep convolutional neural networks

TL;DR: A large, deep convolutional neural network was trained to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes and employed a recently developed regularization method called "dropout" that proved to be very effective.
Journal ArticleDOI

ImageNet Large Scale Visual Recognition Challenge

TL;DR: The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) as mentioned in this paper is a benchmark in object category classification and detection on hundreds of object categories and millions of images, which has been run annually from 2010 to present, attracting participation from more than fifty institutions.
Journal ArticleDOI

Mastering the game of Go with deep neural networks and tree search

TL;DR: Using this search algorithm, the program AlphaGo achieved a 99.8% winning rate against other Go programs, and defeated the human European Go champion by 5 games to 0.5, the first time that a computer program has defeated a human professional player in the full-sized game of Go.
Book

Computer Architecture: A Quantitative Approach

TL;DR: This best-selling title, considered for over a decade to be essential reading for every serious student and practitioner of computer design, has been updated throughout to address the most important trends facing computer designers today.
Related Papers (5)