scispace - formally typeset
Open AccessProceedings ArticleDOI

In-Datacenter Performance Analysis of a Tensor Processing Unit

TLDR
The Tensor Processing Unit (TPU) as discussed by the authors is a custom ASIC deployed in datacenters since 2015 that accelerates the inference phase of neural networks (NN) using a 65,536 8-bit MAC matrix multiply unit that offers a peak throughput of 92 TeraOps/second (TOPS).
Abstract
Many architects believe that major improvements in cost-energy-performance must now come from domain-specific hardware. This paper evaluates a custom ASIC---called a Tensor Processing Unit (TPU) --- deployed in datacenters since 2015 that accelerates the inference phase of neural networks (NN). The heart of the TPU is a 65,536 8-bit MAC matrix multiply unit that offers a peak throughput of 92 TeraOps/second (TOPS) and a large (28 MiB) software-managed on-chip memory. The TPU's deterministic execution model is a better match to the 99th-percentile response-time requirement of our NN applications than are the time-varying optimizations of CPUs and GPUs that help average throughput more than guaranteed latency. The lack of such features helps explain why, despite having myriad MACs and a big memory, the TPU is relatively small and low power. We compare the TPU to a server-class Intel Haswell CPU and an Nvidia K80 GPU, which are contemporaries deployed in the same datacenters. Our workload, written in the high-level TensorFlow framework, uses production NN applications (MLPs, CNNs, and LSTMs) that represent 95% of our datacenters' NN inference demand. Despite low utilization for some applications, the TPU is on average about 15X -- 30X faster than its contemporary GPU or CPU, with TOPS/Watt about 30X -- 80X higher. Moreover, using the CPU's GDDR5 memory in the TPU would triple achieved TOPS and raise TOPS/Watt to nearly 70X the GPU and 200X the CPU.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

A 16-GB 640-GB/s HBM2E DRAM With a Data-Bus Window Extension Technique and a Synergetic On-Die ECC Scheme

TL;DR: Circuit and design techniques are presented for enhancing the performance and reliability of a 3-D-stacked high bandwidth memory-2 extension (HBM2E) to cope with reduced clock cycle time and an uncorrectable bit error rate (UBER) is improved by 105 times.
Proceedings ArticleDOI

Computing-in-Memory with SRAM and RRAM for Binary Neural Networks

TL;DR: This work presents two computing-in-memory (CIM) architectures with parallelized weighted-sum operation for accelerating the inference of BNN, and explores various design options with different sub-array sizes and sensing bit-levels.
Journal ArticleDOI

Pre-Defined Sparse Neural Networks With Hardware Acceleration

TL;DR: In this article, a pre-defined sparsity is proposed to reduce the complexity during both training and inference, regardless of the implementation platform, and an architecture for hardware acceleration that is compatible with pre defined sparsity.
Journal ArticleDOI

How Reduced Data Precision and Degree of Parallelism Impact the Reliability of Convolutional Neural Networks on FPGAs

TL;DR: It is shown that, although increased parallelism increases radiation sensitivity, the performance gains generally outweigh it in terms of global failure rate, and that an 8-bit integer design can deliver over six times more fault-free executions than a 32-bit floating-point implementation.
Posted Content

Efficient Execution of Quantized Deep Learning Models: A Compiler Approach.

TL;DR: This paper addresses the challenges of executing quantized deep learning models on diverse hardware platforms by proposing an augmented compiler approach that created a new dialect called Quantized Neural Network (QNN) that extends the compiler's internal representation with a quantization context.
References
More filters
Proceedings ArticleDOI

Going deeper with convolutions

TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Journal ArticleDOI

ImageNet classification with deep convolutional neural networks

TL;DR: A large, deep convolutional neural network was trained to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes and employed a recently developed regularization method called "dropout" that proved to be very effective.
Journal ArticleDOI

ImageNet Large Scale Visual Recognition Challenge

TL;DR: The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) as mentioned in this paper is a benchmark in object category classification and detection on hundreds of object categories and millions of images, which has been run annually from 2010 to present, attracting participation from more than fifty institutions.
Journal ArticleDOI

Mastering the game of Go with deep neural networks and tree search

TL;DR: Using this search algorithm, the program AlphaGo achieved a 99.8% winning rate against other Go programs, and defeated the human European Go champion by 5 games to 0.5, the first time that a computer program has defeated a human professional player in the full-sized game of Go.
Book

Computer Architecture: A Quantitative Approach

TL;DR: This best-selling title, considered for over a decade to be essential reading for every serious student and practitioner of computer design, has been updated throughout to address the most important trends facing computer designers today.
Related Papers (5)