scispace - formally typeset
Open AccessJournal ArticleDOI

In vivo recordings of brain activity using organic transistors

TLDR
The engineering of an organic electrochemical transistor embedded in an ultrathin organic film designed to record electrophysiological signals on the surface of the brain with superior signal-to-noise ratio is demonstrated.
Abstract
In vivo electrophysiological recordings of neuronal circuits are necessary for diagnostic purposes and for brain-machine interfaces. Organic electronic devices constitute a promising candidate because of their mechanical flexibility and biocompatibility. Here we demonstrate the engineering of an organic electrochemical transistor embedded in an ultrathin organic film designed to record electrophysiological signals on the surface of the brain. The device, tested in vivo on epileptiform discharges, displayed superior signal-to-noise ratio due to local amplification compared with surface electrodes. The organic transistor was able to record on the surface low-amplitude brain activities, which were poorly resolved with surface electrodes. This study introduces a new class of biocompatible, highly flexible devices for recording brain activity with superior signal-to-noise ratio that hold great promise for medical applications.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Skin electronics from scalable fabrication of an intrinsically stretchable transistor array.

TL;DR: The process offers a general platform for incorporating other intrinsically stretchable polymer materials, enabling the fabrication of next-generation stretchable skin electronic devices, and demonstrates an intrinsicallyStretchable polymer transistor array with an unprecedented device density of 347 transistors per square centimetre.
Journal ArticleDOI

Multifunctional wearable devices for diagnosis and therapy of movement disorders

TL;DR: Materials, mechanics and designs for multifunctional, wearable-on-the-skin systems that address technical challenges via monolithic integration of nanomembranes fabricated with a top-down approach, nanoparticles assembled by bottom-up methods, and stretchable electronics on a tissue-like polymeric substrate are described.
Journal ArticleDOI

The rise of plastic bioelectronics

TL;DR: Plastic bioelectronics is a research field that takes advantage of the inherent properties of polymers and soft organic electronics for applications at the interface of biology and electronics, which are soft, stretchable and mechanically conformable.
Journal ArticleDOI

A bioinspired flexible organic artificial afferent nerve

TL;DR: Flexible organic electronics are used to mimic the functions of a biological afferent nerve and construct a hybrid bioelectronic reflex arc to actuate muscles that has potential applications in neurorobotics and neuroprosthetics.
Journal ArticleDOI

"Green" electronics: biodegradable and biocompatible materials and devices for sustainable future.

TL;DR: This Review will highlight recent research advancements in this emerging group of materials and their integration in unconventional organic electronic devices.
References
More filters
Journal ArticleDOI

Neuronal Oscillations in Cortical Networks

TL;DR: Recent findings indicate that network oscillations bias input selection, temporally link neurons into assemblies, and facilitate synaptic plasticity, mechanisms that cooperatively support temporal representation and long-term consolidation of information.
Book

Rhythms of the brain

TL;DR: The brain's default state: self-organized oscillations in rest and sleep, and perturbation of the default patterns by experience.
Journal ArticleDOI

The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes

TL;DR: High-density recordings of field activity in animals and subdural grid recordings in humans can provide insight into the cooperative behaviour of neurons, their average synaptic input and their spiking output, and can increase the understanding of how these processes contribute to the extracellular signal.
Journal ArticleDOI

High gamma power is phase-locked to theta oscillations in human neocortex.

TL;DR: The results indicate that transient coupling between low- and high-frequency brain rhythms coordinates activity in distributed cortical areas, providing a mechanism for effective communication during cognitive processing in humans.
Journal ArticleDOI

Place units in the hippocampus of the freely moving rat

TL;DR: The results suggest that place units were not responding to a simple sensory stimulus nor to a specific motor behavior, and are interpreted as strong support for the cognitive map theory of hippocampal function.
Related Papers (5)