scispace - formally typeset
Journal ArticleDOI

Inertial Ranges in Two‐Dimensional Turbulence

Robert H. Kraichnan
- 01 Jul 1967 - 
- Vol. 10, Iss: 7, pp 1417-1423
Reads0
Chats0
TLDR
In this paper, it was shown that two-dimensional turbulence has both kinetic energy and mean square vorticity as inviscid constants of motion, and two formal inertial ranges, E(k)∼e2/3k−5/3/3, where e is the rate of cascade of kinetic energy per unit mass, η is the time taken to reach a cascade of mean square velocity, and k is the kinetic energy of the entire mass.
Abstract
Two‐dimensional turbulence has both kinetic energy and mean‐square vorticity as inviscid constants of motion. Consequently it admits two formal inertial ranges, E(k)∼e2/3k−5/3 and E(k)∼η2/3k−3, where e is the rate of cascade of kinetic energy per unit mass, η is the rate of cascade of mean‐square vorticity, and the kinetic energy per unit mass is ∫0∞E(k) dk. The −53 range is found to entail backward energy cascade, from higher to lower wavenumbers k, together with zero‐vorticity flow. The −3 range gives an upward vorticity flow and zero‐energy flow. The paradox in these results is resolved by the irreducibly triangular nature of the elementary wavenumber interactions. The formal −3 range gives a nonlocal cascade and consequently must be modified by logarithmic factors. If energy is fed in at a constant rate to a band of wavenumbers ∼ki and the Reynolds number is large, it is conjectured that a quasi‐steady‐state results with a −53 range for k « ki and a −3 range for k » ki, up to the viscous cutoff. The t...

read more

Citations
More filters
Journal ArticleDOI

Lattice boltzmann method for fluid flows

TL;DR: An overview of the lattice Boltzmann method, a parallel and efficient algorithm for simulating single-phase and multiphase fluid flows and for incorporating additional physical complexities, is presented.
Journal ArticleDOI

The lattice Boltzmann equation: theory and applications

TL;DR: The basic elements of the theory of the lattice Boltzmann equation, a special lattice gas kinetic model for hydrodynamics, are reviewed in this paper, together with some generalizations which allow one to extend the range of applicability of the method to a number of fluid dynamics related problems.
Journal ArticleDOI

Global observations of nonlinear mesoscale eddies

TL;DR: In this paper, an automated procedure for identifying and tracking mesoscale features based on their SSH signatures yields 35,891 eddies with average lifetime of 32 weeks and an average propagation distance of 550 km.
Journal ArticleDOI

Zonal flows in plasma—a review

TL;DR: A comprehensive review of zonal flow phenomena in plasmas is presented in this article, where the focus is on zonal flows generated by drift waves and the back-interaction of ZF on the drift waves, and various feedback loops by which the system regulates and organizes itself.
Related Papers (5)