scispace - formally typeset
Open AccessJournal ArticleDOI

Intelligent Reflecting Surface-Assisted Cognitive Radio System

Reads0
Chats0
TLDR
Numerical results demonstrate that IRS can significantly improve the achievable rate of SU under both perfect and imperfect CSI cases, and jointly optimizing the beamforming at SU-TX and the reflecting coefficients at each IRS.
Abstract
Cognitive radio (CR) is an effective solution to improve the spectral efficiency (SE) of wireless communications by allowing the secondary users (SUs) to share spectrum with primary users (PUs). Meanwhile, intelligent reflecting surface (IRS), also known as reconfigurable intelligent surface (RIS), has been recently proposed as a promising approach to enhance energy efficiency (EE) of wireless communication systems through intelligently reconfiguring the channel environment. To improve both SE and EE, in this paper, we introduce multiple IRSs to a downlink multiple-input single-output (MISO) CR system, in which a single SU coexists with a primary network with multiple PU receivers (PU-RXs). Our design objective is to maximize the achievable rate of SU subject to a total transmit power constraint on the SU transmitter (SU-TX) and interference temperature constraints on the PU-RXs, by jointly optimizing the beamforming at SU-TX and the reflecting coefficients at each IRS. Both perfect and imperfect channel state information (CSI) cases are considered in the optimization. Numerical results demonstrate that IRS can significantly improve the achievable rate of SU under both perfect and imperfect CSI cases.

read more

Citations
More filters
Journal ArticleDOI

Intelligent Reflecting Surface-Aided Wireless Communications: A Tutorial

TL;DR: This paper provides a tutorial overview of IRS-aided wireless communications, and elaborate its reflection and channel models, hardware architecture and practical constraints, as well as various appealing applications in wireless networks.
Journal ArticleDOI

Smart Radio Environments Empowered by Reconfigurable Intelligent Surfaces: How It Works, State of Research, and The Road Ahead

TL;DR: Reconfigurable intelligent surfaces (RISs) can be realized in different ways, which include (i) large arrays of inexpensive antennas that are usually spaced half of the wavelength apart; and (ii) metamaterial-based planar or conformal large surfaces whose scattering elements have sizes and inter-distances much smaller than the wavelength.
Posted Content

Smart Radio Environments Empowered by Reconfigurable Intelligent Surfaces: How it Works, State of Research, and Road Ahead.

TL;DR: The emerging research field of RIS-empowered SREs is introduced; the most suitable applications of RISs in wireless networks are overviewed; an electromagnetic-based communication-theoretic framework for analyzing and optimizing metamaterial-based RISs is presented; and the most important research issues to tackle are discussed.
Journal ArticleDOI

Reconfigurable Intelligent Surfaces: Principles and Opportunities

TL;DR: A comprehensive overview of the state-of-the-art on RISs, with focus on their operating principles, performance evaluation, beamforming design and resource management, applications of machine learning to RIS-enhanced wireless networks, as well as the integration of RISs with other emerging technologies.
Posted Content

Reconfigurable Intelligent Surfaces: Principles and Opportunities

TL;DR: A comprehensive overview of the state-of-the-art on RISs, with focus on their operating principles, performance evaluation, beamforming design and resource management, applications of machine learning to RIS-enhanced wireless networks, as well as the integration of RISs with other emerging technologies is provided in this article.
References
More filters
Journal ArticleDOI

Cognitive radio: brain-empowered wireless communications

TL;DR: Following the discussion of interference temperature as a new metric for the quantification and management of interference, the paper addresses three fundamental cognitive tasks: radio-scene analysis, channel-state estimation and predictive modeling, and the emergent behavior of cognitive radio.
Journal ArticleDOI

Cognitive radio: making software radios more personal

TL;DR: With RKRL, cognitive radio agents may actively manipulate the protocol stack to adapt known etiquettes to better satisfy the user's needs and transforms radio nodes from blind executors of predefined protocols to radio-domain-aware intelligent agents that search out ways to deliver the services the user wants even if that user does not know how to obtain them.
Journal ArticleDOI

Wireless Communications Through Reconfigurable Intelligent Surfaces

TL;DR: In this paper, the authors provide a detailed overview and historical perspective on state-of-the-art solutions, and elaborate on the fundamental differences with other technologies, the most important open research issues to tackle, and the reasons why the use of reconfigurable intelligent surfaces necessitates to rethink the communication-theoretic models currently employed in wireless networks.
Journal ArticleDOI

Reconfigurable Intelligent Surfaces for Energy Efficiency in Wireless Communication

TL;DR: In this article, the authors developed energy-efficient designs for both the transmit power allocation and the phase shifts of the surface reflecting elements subject to individual link budget guarantees for the mobile users.
Journal ArticleDOI

Coding metamaterials, digital metamaterials and programmable metamaterials

TL;DR: Digital metamaterials consisting of two kinds of unit cells whose different phase responses allow them to act as ‘0’ and ‘1’ bits are developed to enable controlled manipulation of electromagnetic waves.
Related Papers (5)