scispace - formally typeset
Open AccessJournal ArticleDOI

KMT-2018-BLG-1743: planetary microlensing event occurring on two source stars

TLDR
The analysis of the microlensing event KMT-2018-BLG-1743 is presented in this article, where it is shown that 2L2S interpretations with a planetary lens system and a binary source best explain the observed light curve with the values of the relative lens-source proper motion expected from the two degenerate solutions.
Abstract
We present the analysis of the microlensing event KMT-2018-BLG-1743. The light curve of the event, with a peak magnification $A_{\rm peak}\sim 800$, exhibits two anomaly features, one around the peak and the other on the falling side of the light curve. An interpretation with a binary lens and a single source (2L1S) cannot describe the anomalies. By conducting additional modeling that includes an extra lens (3L1S) or an extra source (2L2S) relative to a 2L1S interpretation, we find that 2L2S interpretations with a planetary lens system and a binary source best explain the observed light curve with $\Delta\chi^2\sim 188$ and $\sim 91$ over the 2L1S and 3L1S solutions, respectively. Assuming that these $\Delta\chi^2$ values are adequate for distinguishing the models, the event is the fourth 2L2S event and the second 2L2S planetary event. The 2L2S interpretations are subject to a degeneracy, resulting in two solutions with $s>1.0$ (wide solution) and $s<1.0$ (close solution). The masses of the lens components and the distance to the lens are $(M_{\rm host}/M_\odot, M_{\rm planet}/M_{\rm J}, D_{\rm L}/{\rm kpc}) \sim (0.19^{+0.27}_{-0.111}, 0.25^{+0.34}_{-0.14}, 6.48^{+0.94}_{-1.03})$ and $\sim (0.42^{+0.34}_{-0.25}, 1.61^{+1.30}_{-0.97}, 6.04^{+0.93}_{-1.27})$ according to the wide and close solutions, respectively. The source is a binary composed of an early G dwarf and a mid M dwarf. The values of the relative lens-source proper motion expected from the two degenerate solutions, $\mu_{\rm wide}\sim 2.3 $mas yr$^{-1}$ and $\mu_{\rm close} \sim 4.1 $mas yr$^{-1}$, are substantially different, and thus the degeneracy can be broken by resolving the lens and source from future high-resolution imaging observations.

read more

Citations
More filters
Journal ArticleDOI

KMT-2021-BLG-0240: Microlensing event with a deformed planetary signal

TL;DR: In this article , the light curve of the microlensing event KMT-2021-BLG-0240 exhibits a short-lasting anomaly with complex features near the peak at the 0.1 mag level from a single-lens single-source model.
References
More filters
Journal ArticleDOI

A synthetic view on structure and evolution of the Milky Way

TL;DR: In this article, new constraints on evolution parameters obtained from the Besancon model of population synthesis and analysis of optical and near-infrared star counts are presented, in agreement with Hipparcos results and the observed rotation curve.
Journal ArticleDOI

Jhklm photometry: standard systems, passbands, and intrinsic colors

TL;DR: In this paper, the relations between colors of the JHKL systems of several observatories are examined, and linear relations are derived for transformation between the (J-K), (H, K, H, and L) colors in the different systems.
Journal ArticleDOI

Gravitational microlensing by the galactic halo

TL;DR: A simple model of microlensing by massive objects that might be present in the halo of the Galaxy is presented in this article, where it is shown that in any nearby galaxy one star out of a million is strongly microlensed by a "dark" object located in the Galactic halo, if the hale is made up of objects more massive than about 10 to the -8th solar mass.
Journal ArticleDOI

A Method for Optimal Image Subtraction

TL;DR: In this paper, a new method was proposed for image subtraction using a simple least-squares analysis using all the pixels of both images, and also showed that it is possible to fit the differential background variation at the same time.
Journal ArticleDOI

Gravitational microlensing by double stars and planetary systems

TL;DR: In this paper, it is estimated that about 10 percent of all lensing episodes of the Galactic bulge stars will strongly display the binary nature of the lens, even if the companion is a planet.
Related Papers (5)

OGLE-2009-BLG-092/MOA-2009-BLG-137: A Dramatic Repeating Event With the Second Perturbation Predicted by Real-Time Analysis

Yoon-Hyun Ryu, +107 more