scispace - formally typeset
Open AccessJournal ArticleDOI

Machine Learning Empowered Trajectory and Passive Beamforming Design in UAV-RIS Wireless Networks

Reads0
Chats0
TLDR
Numerical results demonstrate that the energy dissipation of the UAV can be significantly reduced by integrating RISs in UAV-enabled wireless networks and the proposed D-DQN based algorithm is capable of converging with minor constraints.
Abstract
A novel framework is proposed for integrating reconfigurable intelligent surfaces (RIS) in unmanned aerial vehicle (UAV) enabled wireless networks, where an RIS is deployed for enhancing the service quality of the UAV. Non-orthogonal multiple access (NOMA) technique is invoked to further improve the spectrum efficiency of the network, while mobile users (MUs) are considered as roaming continuously. The energy consumption minimizing problem is formulated by jointly designing the movement of the UAV, phase shifts of the RIS, power allocation policy from the UAV to MUs, as well as determining the dynamic decoding order. A decaying deep Q-network (D-DQN) based algorithm is proposed for tackling this pertinent problem. In the proposed D-DQN based algorithm, the central controller is selected as an agent for periodically observing the state of UAV-enabled wireless network and for carrying out actions to adapt to the dynamic environment. In contrast to the conventional DQN algorithm, the decaying learning rate is leveraged in the proposed D-DQN based algorithm for attaining a tradeoff between accelerating training speed and converging to the local optimal. Numerical results demonstrate that: 1) In contrast to the conventional Q-learning algorithm, which cannot converge when being adopted for solving the formulated problem, the proposed D-DQN based algorithm is capable of converging with minor constraints; 2) The energy dissipation of the UAV can be significantly reduced by integrating RISs in UAV-enabled wireless networks; 3) By designing the dynamic decoding order and power allocation policy, the RIS-NOMA case consumes 11.7% less energy than the RIS-OMA case.

read more

Citations
More filters
Journal ArticleDOI

Reconfigurable Intelligent Surfaces: Principles and Opportunities

TL;DR: A comprehensive overview of the state-of-the-art on RISs, with focus on their operating principles, performance evaluation, beamforming design and resource management, applications of machine learning to RIS-enhanced wireless networks, as well as the integration of RISs with other emerging technologies.
Posted Content

Reconfigurable Intelligent Surfaces: Principles and Opportunities

TL;DR: A comprehensive overview of the state-of-the-art on RISs, with focus on their operating principles, performance evaluation, beamforming design and resource management, applications of machine learning to RIS-enhanced wireless networks, as well as the integration of RISs with other emerging technologies is provided in this article.
Journal ArticleDOI

Distributed Learning in Wireless Networks: Recent Progress and Future Challenges

TL;DR: In this paper, the authors provide a comprehensive study of how distributed learning can be efficiently and effectively deployed over wireless edge networks, including federated learning, federated distillation, distributed inference, and multi-agent reinforcement learning.
Journal ArticleDOI

Green UAV communications for 6G: A survey

TL;DR: A comprehensive survey on green UAV communications for 6G is carried out, and the typical UAVs and their energy consumption models are introduced, and several promising techniques and open research issues are pointed out.
Journal ArticleDOI

Learning-Based Robust and Secure Transmission for Reconfigurable Intelligent Surface Aided Millimeter Wave UAV Communications

TL;DR: A novel and effective twin-DDPG deep reinforcement learning (TDDRL) algorithm is proposed that can significantly improve the sum secrecy rate in the millimeter-wave (mmWave) unmanned aerial vehicle communication assisted by a reconfigurable intelligent surface (RIS).
References
More filters
Journal ArticleDOI

Intelligent Reflecting Surface Enhanced Wireless Network via Joint Active and Passive Beamforming

TL;DR: Simulation results demonstrate that an IRS-aided single-cell wireless system can achieve the same rate performance as a benchmark massive MIMO system without using IRS, but with significantly reduced active antennas/RF chains.
Journal ArticleDOI

Reconfigurable Intelligent Surfaces for Energy Efficiency in Wireless Communication

TL;DR: In this article, the authors developed energy-efficient designs for both the transmit power allocation and the phase shifts of the surface reflecting elements subject to individual link budget guarantees for the mobile users.
Journal ArticleDOI

Towards Smart and Reconfigurable Environment: Intelligent Reflecting Surface Aided Wireless Network

TL;DR: In this paper, the authors provide an overview of the IRS technology, including its main applications in wireless communication, competitive advantages over existing technologies, hardware architecture as well as the corresponding new signal model.
Journal ArticleDOI

A Survey on Non-Orthogonal Multiple Access for 5G Networks: Research Challenges and Future Trends

TL;DR: In this paper, the authors provide an overview of the latest NOMA research and innovations as well as their applications in 5G wireless networks and discuss future challenges and future research challenges.
Journal ArticleDOI

Smart radio environments empowered by reconfigurable AI meta-surfaces: an idea whose time has come

TL;DR: This paper overviews the current research efforts on smart radio environments, the enabling technologies to realize them in practice, the need of new communication-theoretic models for their analysis and design, and the long-term and open research issues to be solved towards their massive deployment.
Related Papers (5)