scispace - formally typeset
Open AccessJournal ArticleDOI

Making sense of non-Hermitian Hamiltonians

Carl M. Bender
- 30 May 2007 - 
- Vol. 70, Iss: 6, pp 947-1018
Reads0
Chats0
TLDR
In this article, an alternative formulation of quantum mechanics in which the mathematical axiom of Hermiticity (transpose + complex conjugate) is replaced by the physically transparent condition of space?time reflection ( ) symmetry.
Abstract
The Hamiltonian H specifies the energy levels and time evolution of a quantum theory. A standard axiom of quantum mechanics requires that H be Hermitian because Hermiticity guarantees that the energy spectrum is real and that time evolution is unitary (probability-preserving). This paper describes an alternative formulation of quantum mechanics in which the mathematical axiom of Hermiticity (transpose +complex conjugate) is replaced by the physically transparent condition of space?time reflection ( ) symmetry. If H has an unbroken symmetry, then the spectrum is real. Examples of -symmetric non-Hermitian quantum-mechanical Hamiltonians are and . Amazingly, the energy levels of these Hamiltonians are all real and positive!Does a -symmetric Hamiltonian H specify a physical quantum theory in which the norms of states are positive and time evolution is unitary? The answer is that if H has an unbroken symmetry, then it has another symmetry represented by a linear operator . In terms of , one can construct a time-independent inner product with a positive-definite norm. Thus, -symmetric Hamiltonians describe a new class of complex quantum theories having positive probabilities and unitary time evolution.The Lee model provides an excellent example of a -symmetric Hamiltonian. The renormalized Lee-model Hamiltonian has a negative-norm 'ghost' state because renormalization causes the Hamiltonian to become non-Hermitian. For the past 50 years there have been many attempts to find a physical interpretation for the ghost, but all such attempts failed. The correct interpretation of the ghost is simply that the non-Hermitian Lee-model Hamiltonian is -symmetric. The operator for the Lee model is calculated exactly and in closed form and the ghost is shown to be a physical state having a positive norm. The ideas of symmetry are illustrated by using many quantum-mechanical and quantum-field-theoretic models.

read more

Citations
More filters
Journal ArticleDOI

Observation of parity–time symmetry in optics

TL;DR: In this paper, the authors report the first observation of the behaviour of a PT optical coupled system that judiciously involves a complex index potential, and observe both spontaneous PT symmetry breaking and power oscillations violating left-right symmetry.
Journal ArticleDOI

Observation of PT-Symmetry Breaking in Complex Optical Potentials

TL;DR: This work demonstrates experimentally passive PT-symmetry breaking within the realm of optics, which leads to a loss induced optical transparency in specially designed pseudo-Hermitian guiding potentials.
Journal ArticleDOI

Parity–time-symmetric whispering-gallery microcavities

TL;DR: In this paper, it was shown that coupled optical microcavities bear all the hallmarks of parity-time symmetry; that is, the system dynamics are unchanged by both time-reversal and mirror transformations.
Journal ArticleDOI

Non-Hermitian physics and PT symmetry

TL;DR: In this paper, the interplay between parity-time symmetry and non-Hermitian physics in optics, plasmonics and optomechanics has been explored both theoretically and experimentally.
Journal ArticleDOI

Parity–time synthetic photonic lattices

TL;DR: The experimental observation of light transport in large-scale temporal lattices that are parity–time symmetric is reported and it is demonstrated that periodic structures respecting this symmetry can act as unidirectional invisible media when operated near their exceptional points.
References
More filters
Book

Quantum Mechanics

Book

The Theory of Matrices

TL;DR: In this article, the Routh-Hurwitz problem of singular pencils of matrices has been studied in the context of systems of linear differential equations with variable coefficients, and its applications to the analysis of complex matrices have been discussed.
Book ChapterDOI

On the quantum correction for thermodynamic equilibrium

TL;DR: In this article, the Boltzmann formula for lower temperatures has been developed for a correction term, which can be developed into a power series of h. The formula is developed for this correction by means of a probability function and the result discussed.
Related Papers (5)