scispace - formally typeset
Journal ArticleDOI

Microstructures and Mechanical Properties of Ti6Al4V Parts Fabricated by Selective Laser Melting and Electron Beam Melting

TLDR
In this article, the authors compared two metal additive manufacturing processes, selective laser melting (SLM) and electron beam melting (EBM), based on microstructural and mechanical property evaluation of Ti6Al4V parts produced by these two processes.
Abstract
This work compares two metal additive manufacturing processes, selective laser melting (SLM) and electron beam melting (EBM), based on microstructural and mechanical property evaluation of Ti6Al4V parts produced by these two processes. Tensile and fatigue bars conforming to ASTM standards were fabricated using Ti6Al4V ELI grade material. Microstructural evolution was studied using optical and scanning electron microscopy. Tensile and fatigue tests were carried out to understand mechanical properties and to correlate them with the corresponding microstructure. The results show differences in microstructural evolution between SLM and EBM processed Ti6Al4V and their influence on mechanical properties. The microstructure of SLM processed parts were composed of an α′ martensitic phase, whereas the EBM processed parts contain primarily α and a small amount of β phase. Consequently, there are differences in tensile and fatigue properties between SLM- and EBM-produced Ti6Al4V parts. The differences are related to the cooling rates experienced as a consequence of the processing conditions associated with SLM and EBM processes.

read more

Citations
More filters
Journal ArticleDOI

Additive manufacturing of metallic components – Process, structure and properties

TL;DR: A review of the emerging research on additive manufacturing of metallic materials is provided in this article, which provides a comprehensive overview of the physical processes and the underlying science of metallurgical structure and properties of the deposited parts.
Journal ArticleDOI

Additive manufacturing of metals

TL;DR: In this paper, the authors describe the complex relationship between additive manufacturing processes, microstructure and resulting properties for metals, and typical microstructures for additively manufactured steel, aluminium and titanium are presented.
Journal ArticleDOI

Additive manufacturing of Ti6Al4V alloy: A review

TL;DR: In this paper, the recent progress on Ti6Al4V fabricated by three mostly developed additive manufacturing techniques-directed energy deposition (DED), selective laser melting (SLM) and electron beam melting (EBM)-is thoroughly investigated and compared.
Journal ArticleDOI

Metal Additive Manufacturing: A Review of Mechanical Properties

TL;DR: A review of published data on the mechanical properties of additively manufactured metallic materials can be found in this paper, where the additive manufacturing techniques utilized to generate samples covered in this review include powder bed fusion (eBM, SLM, DMLS) and directed energy deposition (eBF3).
Journal ArticleDOI

Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing

TL;DR: In this article, the authors investigated the anisotropic mechanical properties of a Ti-6Al-4V three-dimensional cruciform component fabricated using a directed energy deposition additive manufacturing (AM) process.
References
More filters
Journal ArticleDOI

A study of the microstructural evolution during selective laser melting of Ti–6Al–4V

TL;DR: In this article, the development of the microstructure of the Ti-6Al-4V alloy processed by selective laser melting (SLM) was studied by light optical microscopy.
Journal ArticleDOI

Heat treatment of Ti6Al4V produced by Selective Laser Melting: Microstructure and mechanical properties

TL;DR: In this paper, the effect of several heat treatments on the microstructure and mechanical properties of Ti6Al4V processed by Selective Laser Melting (SLM) is studied.
Journal ArticleDOI

Consolidation phenomena in laser and powder-bed based layered manufacturing

TL;DR: In this article, the authors describe which types of laser-induced consolidation can be applied to what type of material, and demonstrate that although SLS/SLM can process polymers, metals, ceramics and composites, quite some limitations and problems cause the palette of applicable materials still to be limited.
Journal ArticleDOI

As-Fabricated and Heat-Treated Microstructures of the Ti-6Al-4V Alloy Processed by Selective Laser Melting

TL;DR: In this paper, the authors presented the various types of microstructure of the Ti-6Al-4V alloy after post-fabrication heat treatments below or above the β transus.
Journal ArticleDOI

The Origin of Microstructural Diversity, Texture, and Mechanical Properties in Electron Beam Melted Ti-6Al-4V

TL;DR: In this paper, a β-phase reconstruction from room temperature α-phase electron backscatter diffraction (EBSD) data, reveals a strong texture perpendicular to the build axis.
Related Papers (5)