scispace - formally typeset
Open AccessJournal ArticleDOI

Model physics and chemistry causing intermodel disagreement within the VolMIP-Tambora Interactive Stratospheric Aerosol ensemble

TLDR
In this article, a pre-study experiment with interactive stratospheric aerosol models simulating the volcanic aerosol cloud from an eruption resembling the 1815 Mt. Tambora eruption (VolMIP-Tambora ISA ensemble).
Abstract
. As part of the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP), several climate modeling centers performed a coordinated pre-study experiment with interactive stratospheric aerosol models simulating the volcanic aerosol cloud from an eruption resembling the 1815 Mt. Tambora eruption (VolMIP-Tambora ISA ensemble). The pre-study provided the ancillary ability to assess intermodel diversity in the radiative forcing for a large stratospheric-injecting equatorial eruption when the volcanic aerosol cloud is simulated interactively. An initial analysis of the VolMIP-Tambora ISA ensemble showed large disparities between models in the stratospheric global mean aerosol optical depth (AOD). In this study, we now show that stratospheric global mean AOD differences among the participating models are primarily due to differences in aerosol size, which we track here by effective radius. We identify specific physical and chemical processes that are missing in some models and/or parameterized differently between models, which are together causing the differences in effective radius. In particular, our analysis indicates that interactively tracking hydroxyl radical (OH) chemistry following a large volcanic injection of sulfur dioxide ( SO2 ) is an important factor in allowing for the timescale for sulfate formation to be properly simulated. In addition, depending on the timescale of sulfate formation, there can be a large difference in effective radius and subsequently AOD that results from whether the SO2 is injected in a single model grid cell near the location of the volcanic eruption, or whether it is injected as a longitudinally averaged band around the Earth.

read more

Content maybe subject to copyright    Report

Citations
More filters

Volcanic Forcing of Climate over the Past 1500 Years: An Improved Ice-Core-Based Index for Climate Models

TL;DR: This paper extracted volcanic sulfate signals from each ice core record by applying a high-pass loess filter to the time series and examining peaks that exceed twice the 31-year running median absolute deviation.
Journal ArticleDOI

Climate change modulates the stratospheric volcanic sulfate aerosol lifecycle and radiative forcing from tropical eruptions.

TL;DR: In this paper, the authors combine an eruptive column model with an aerosol-climate model to show that the stratospheric aerosol optical depth perturbation from frequent moderate-magnitude tropical eruptions (e.g. Mt. Pinatubo 1991) will be exacerbated by 30, 52 and 15% in the future, respectively.
Journal ArticleDOI

Water vapor injection into the stratosphere by Hunga Tonga-Hunga Ha’apai

Holger Vömel, +2 more
- 23 Sep 2022 - 
TL;DR: In this paper , the authors show that the eruption of the submarine volcano Hunga Tonga-Hunga Ha'apai on 15 January 2022 injected at least 50 teragrams of water vapor directly into the stratosphere.
Journal ArticleDOI

Volcanic effects on climate: recent advances and future avenues

TL;DR: In the last twenty years, several advances have been made, mainly due to improved satellite measurements and observations enabling the effects of small-magnitude eruptions to be quantified, new proxy reconstructions used to investigate the impact of past eruptions, and state-of-the-art aerosol-climate modelling that has led to new insights on how volcanic eruptions affect the climate as discussed by the authors .
References
More filters

Atmospheric chemistry and physics: from air pollution to climate change.

TL;DR: In this article, the authors present a model for the chemistry of the Troposphere of the atmosphere and describe the properties of the Atmospheric Aqueous phase of single aerosol particles.
Book

Atmospheric Chemistry and Physics: From Air Pollution to Climate Change

TL;DR: In this paper, the authors present a model for the chemistry of the Troposphere of the atmosphere and describe the properties of the Atmospheric Aqueous phase of single aerosol particles.
Journal ArticleDOI

Volcanic eruptions and climate

Alan Robock
TL;DR: In this article, a new capability to predict the climatic response to a large tropical eruption for the succeeding 2 years will prove valuable to society, as well as to detect and attribute anthropogenic influences on climate, including effects of greenhouse gases, aerosols, and ozone-depleting chemicals.
Journal ArticleDOI

The quasi-biennial oscillation

TL;DR: The quasi-biennial oscillation (QBO) as discussed by the authors dominates the variability of the equatorial stratosphere (∼16-50 km) and is easily seen as downward propagating easterly and westerly wind regimes, with a variable period averaging approximately 28 months.
Journal ArticleDOI

The aerosol-climate model ECHAM5-HAM

TL;DR: The aerosol-climate modelling system ECHAM5-HAM as mentioned in this paper is based on a flexible microphysical approach and, as the number of externally imposed parameters is minimised, allows the application in a wide range of climate regimes.
Related Papers (5)