scispace - formally typeset
Open AccessJournal ArticleDOI

Molecular basis of mechanotransduction in living cells

Owen P. Hamill, +1 more
- 01 Apr 2001 - 
- Vol. 81, Iss: 2, pp 685-740
Reads0
Chats0
TLDR
The simplest cell-like structure, the lipid bilayer vesicle, can respond to mechanical deformation by elastic membrane dilation/thinning and curvature changes and changes in local membrane curvature may shift the equilibrium between channel conformations.
Abstract
The simplest cell-like structure, the lipid bilayer vesicle, can respond to mechanical deformation by elastic membrane dilation/thinning and curvature changes. When a protein is inserted in the lip...

read more

Citations
More filters
Journal ArticleDOI

Transmembrane crosstalk between the extracellular matrix--cytoskeleton crosstalk.

TL;DR: This review describes integrin functions, mechanosensors, molecular switches and signal-transduction pathways activated and integrated by adhesion, with a unifying theme being the importance of local physical forces.
Journal ArticleDOI

Piezo1 and Piezo2 Are Essential Components of Distinct Mechanically Activated Cation Channels

TL;DR: Two genes that encode proteins, Piezo1 and Piezo2, are identified, which are required for mechanically stimulated cation conductance in these cells and in cultured dorsal root ganglion neurons, and it is proposed that Piezos are components of MA cation channels.
Journal ArticleDOI

Calcium's Role in Mechanotransduction during Muscle Development

TL;DR: How diverse mechanical stimuli cause changes in calcium homeostasis by affecting membrane channels and the intracellular stores, which in turn regulate multiple pathways that impart these effects and control the fate of muscle tissue is discussed in detail.
Journal ArticleDOI

Role of Extracellular Matrix in Adaptation of Tendon and Skeletal Muscle to Mechanical Loading

TL;DR: Full understanding of these physiological processes will provide the physiological basis for understanding of tissue overloading and injury seen in both tendons and muscle with repetitive work and leisure time physical activity.
Journal ArticleDOI

Physiology of cell volume regulation in vertebrates.

TL;DR: Current knowledge regarding the molecular identity of these transport pathways and their regulation by, e.g., membrane deformation, ionic strength, Ca(2+), protein kinases and phosphatases, cytoskeletal elements, GTP binding proteins, lipid mediators, and reactive oxygen species are reviewed.
References
More filters
Journal ArticleDOI

Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches.

TL;DR: The extracellular patch clamp method, which first allowed the detection of single channel currents in biological membranes, has been further refined to enable higher current resolution, direct membrane patch potential control, and physical isolation of membrane patches.
Journal ArticleDOI

Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics.

TL;DR: Apoptosis seems to be involved in cell turnover in many healthy adult tissues and is responsible for focal elimination of cells during normal embryonic development, and participates in at least some types of therapeutically induced tumour regression.
Journal ArticleDOI

Functional rafts in cell membranes

Kai Simons, +1 more
- 05 Jun 1997 - 
TL;DR: A new aspect of cell membrane structure is presented, based on the dynamic clustering of sphingolipids and cholesterol to form rafts that move within the fluid bilayer that function as platforms for the attachment of proteins when membranes are moved around inside the cell and during signal transduction.
Journal ArticleDOI

The capsaicin receptor: a heat-activated ion channel in the pain pathway

TL;DR: The cloned capsaicin receptor is also activated by increases in temperature in the noxious range, suggesting that it functions as a transducer of painful thermal stimuli in vivo.
Book

Escherichia coli and Salmonella :cellular and molecular biology

TL;DR: The Enteric Bacterial Cell and the Age of Bacteria Variations on a Theme by Escherichia is described.
Related Papers (5)