scispace - formally typeset
Journal ArticleDOI

Molecular mechanisms of glutamate receptor-mediated excitotoxic neuronal cell death.

TLDR
The present review is aimed at summarizing the molecular mechanisms of NMDA receptor and AMPA/kainate receptor-mediated excitotoxic neuronal cell death.
Abstract
Excitotoxicity is one of the most extensively studied processes of neuronal cell death, and plays an important role in many central nervous system (CNS) diseases, including CNS ischemia, trauma, and neurodegenerative disorders. First described by Olney, excitotoxicity was later characterized as an excessive synaptic release of glutamate, which in turn activates postsynaptic glutamate receptors. While almost every glutamate receptor subtype has been implicated in mediating excitotoxic cell death, it is generally accepted that the N-methyl-D-aspartate (NMDA) subtypes play a major role, mainly owing to their high calcium (Ca2+) permeability. However, other glutamate receptor subtypes such as 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl) propionate (AMPA) or kainate receptors have also been attributed a critical role in mediating excitotoxic neuronal cell death. Although the molecular basis of glutamate toxicity is uncertain, there is general agreement that it is in large part Ca2+-dependent. The present review is aimed at summarizing the molecular mechanisms of NMDA receptor and AMPA/kainate receptor-mediated excitotoxic neuronal cell death.

read more

Citations
More filters
Journal ArticleDOI

Calcium, ATP, and ROS: a mitochondrial love-hate triangle

TL;DR: A "two-hit" hypothesis is developed, in which Ca(2+) plus another pathological stimulus can bring about mitochondrial dysfunction, and the delicate balance between the positive and negative effects of Ca( 2+) and the signaling events that perturb this balance is highlighted.
Journal ArticleDOI

Regulated necrosis: the expanding network of non-apoptotic cell death pathways

TL;DR: Elucidating how these pathways of regulated necrosis are interconnected at the molecular level should enable this process to be therapeutically targeted.
Journal ArticleDOI

Necrotic death as a cell fate

TL;DR: Evidence suggests that a cell can initiate its own demise by necrosis in a manner that initiates both inflammatory and/or reparative responses in the host, and may serve to maintain tissue and organismal integrity.
Journal ArticleDOI

Retinal ischemia: mechanisms of damage and potential therapeutic strategies.

TL;DR: Given the increasing understanding of the events involved in ischemic neuronal injury, it is hoped that clinically effective treatments for retinal ischemia will soon be available.
References
More filters
Journal ArticleDOI

Cloned Glutamate Receptors

TL;DR: The application of molecular cloning technology to the study of the glutamate receptor system has led to an explosion of knowledge about the structure, expression, and function of this most important fast excitatory transmitter system in the mammalian brain.
Journal ArticleDOI

Developmental and regional expression in the rat brain and functional properties of four NMDA receptors.

TL;DR: Recombinant binary NR1-NR2 channels show comparable Ca2+ permeabilities, but marked differences in voltage-dependent Mg2+ block and in offset decay time constants, which provide a basis for NMDA channel heterogeneity in the brain.
Journal ArticleDOI

Heteromeric NMDA receptors: Molecular and functional distinction of subtypes

TL;DR: Molecular cloning identified three complementary DNA species of rat brain, encoding NMDA receptor subunits NMDAR2A (NR2A), NR2B, and NR2C, which are 55 to 70% ientical in sequence, and these are structurally related, with less than 20% sequence identity, to other excitatory amino acid receptor sub Units.
Journal ArticleDOI

Structure and regulation of voltage-gated Ca2+ channels.

TL;DR: The distinct structures and patterns of regulation of these three families of Ca(2+) channels provide a flexible array of Ca('s 2+) entry pathways in response to changes in membrane potential and a range of possibilities for regulation of Ca (2+) entry by second messenger pathways and interacting proteins.
Related Papers (5)