scispace - formally typeset
Open AccessJournal ArticleDOI

MR fingerprinting Deep RecOnstruction NEtwork (DRONE)

Ouri Cohen, +2 more
- 01 Sep 2018 - 
- Vol. 80, Iss: 3, pp 885-894
TLDR
A novel fast method for reconstruction of multi‐dimensional MR fingerprinting (MRF) data using deep learning methods and it is shown that this method can be used to solve the challenge of integrating 3D image recognition and 3D handwriting analysis.
Abstract
Demonstrate a novel fast method for reconstruction of multi-dimensional MR fingerprinting (MRF) data using deep learning methods.A neural network (NN) is defined using the TensorFlow framework and trained on simulated MRF data computed with the extended phase graph formalism. The NN reconstruction accuracy for noiseless and noisy data is compared to conventional MRF template matching as a function of training data size and is quantified in simulated numerical brain phantom data and International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom data measured on 1.5T and 3T scanners with an optimized MRF EPI and MRF fast imaging with steady state precession (FISP) sequences with spiral readout. The utility of the method is demonstrated in a healthy subject in vivo at 1.5T.Network training required 10 to 74 minutes; once trained, data reconstruction required approximately 10 ms for the MRF EPI and 76 ms for the MRF FISP sequence. Reconstruction of simulated, noiseless brain data using the NN resulted in a RMS error (RMSE) of 2.6 ms for T1 and 1.9 ms for T2 . The reconstruction error in the presence of noise was less than 10% for both T1 and T2 for SNR greater than 25 dB. Phantom measurements yielded good agreement (R2  = 0.99/0.99 for MRF EPI T1 /T2 and 0.94/0.98 for MRF FISP T1 /T2 ) between the T1 and T2 estimated by the NN and reference values from the International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom.Reconstruction of MRF data with a NN is accurate, 300- to 5000-fold faster, and more robust to noise and dictionary undersampling than conventional MRF dictionary-matching.

read more

Citations
More filters
Journal ArticleDOI

An overview of deep learning in medical imaging focusing on MRI

TL;DR: In this article, the authors provide a short overview of recent advances and some associated challenges in machine learning applied to medical image processing and image analysis, and provide a starting point for people interested in experimenting and perhaps contributing to the field of machine learning for medical imaging.
Journal ArticleDOI

An overview of deep learning in medical imaging focusing on MRI

TL;DR: This paper indicates how deep learning has been applied to the entire MRI processing chain, from acquisition to image retrieval, from segmentation to disease prediction, and provides a starting point for people interested in experimenting and contributing to the field of deep learning for medical imaging.
Journal ArticleDOI

Deep Magnetic Resonance Image Reconstruction: Inverse Problems Meet Neural Networks

TL;DR: Several signal processing issues for maximizing the potential of deep reconstruction in fast MRI are discussed, which may facilitate further development of the networks and performance analysis from a theoretical point of view.
Journal ArticleDOI

Sample-Size Determination Methodologies for Machine Learning in Medical Imaging Research: A Systematic Review

TL;DR: The study highlights the scarcity of research in training set size determination methodologies applied to ML in medical imaging, emphasizes the need to standardize current reporting practices, and guides future work in development and streamlining of pre hoc and post hoc sample size approaches.
References
More filters
Proceedings Article

Adam: A Method for Stochastic Optimization

TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Journal ArticleDOI

Multilayer feedforward networks are universal approximators

TL;DR: It is rigorously established that standard multilayer feedforward networks with as few as one hidden layer using arbitrary squashing functions are capable of approximating any Borel measurable function from one finite dimensional space to another to any desired degree of accuracy, provided sufficiently many hidden units are available.
Journal ArticleDOI

Deep learning in neural networks

TL;DR: This historical survey compactly summarizes relevant work, much of it from the previous millennium, review deep supervised learning, unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks.
Proceedings ArticleDOI

Extracting and composing robust features with denoising autoencoders

TL;DR: This work introduces and motivate a new training principle for unsupervised learning of a representation based on the idea of making the learned representations robust to partial corruption of the input pattern.
Related Papers (5)