scispace - formally typeset
Journal ArticleDOI

Nanostructures for surface plasmons

Junxi Zhang, +1 more
- 30 Jun 2012 - 
- Vol. 4, Iss: 2, pp 157-321
Reads0
Chats0
TLDR
In this article, a review of the recent progress in nanostructures for surface plasmons is presented, where the resonance modes include longitudinal and transversal resonances, dipolar and multipolar resonances and Fano resonances.
Abstract
Surface plasmons (SPs) are electromagnetic excitations existing at the interface between a metal and a dielectric material. Control and manipulation of light based on SPs at the nanometer scale offers significant advantages in nanophotonic devices with very small elements, since the peculiar properties of SPs can be tailored by construction of nanostructures with various interfaces between metals and dielectric materials. Recent progress in nanostructures for SPs is reviewed. Resonance frequencies or wavelengths of SPs can be tuned by design of metal nanostructures, such as nanoparticles, nanorods, nanowires, nanosheets, and nanodisks. Moreover, SP resonance modes can also be tuned by control of the shapes and sizes of nanostructures, where the resonance modes include longitudinal and transversal resonances, dipolar and multipolar resonances, and Fano resonances. Based on SP coupling for metal nanostructures, metal–semiconductor nanostructures, metal–dielectric nanostructures, and metal–polymer nanostructures, propagating and guiding of SP can be achieved through the metal nanostructures and the hybrid structures. Additionally, metal nanostructures exhibit remarkable field enhancement effects (e.g., local near-field enhancement, and optical transmission enhancement) due to SP coupling. Furthermore, SP nanostructures perform unique focusing and imaging characteristics at the nanometer scale beyond the diffraction limit. Tailoring SPs by control of the nanostructures is expected to be used for design and development of high-performance optical components and circuits, which offer both potential and challenges for new generations of nanophotonic devices.

read more

Citations
More filters
Journal Article

Mapping surface plasmons on a single metallic nanoparticle

TL;DR: In this paper, the authors used electron beams instead of photons to detect plasmons as resonance peaks in the energy-loss spectra of sub-nanometre electron beams rastered on nanoparticles of well-defined geometrical parameters.
Journal ArticleDOI

Optical Refractive Index Sensors with Plasmonic and Photonic Structures: Promising and Inconvenient Truth

TL;DR: In this paper, the authors focus on optical refractive index (RI) sensors with no fluorescent labeling required, and utilize two parameters to characterize and compare the performance of optical RI sensors: sensitivity to RI change (denoted by symbol SRI) and figure of merit (in short, FoM).
Journal ArticleDOI

Nanostructure arrays in free-space: optical properties and applications

TL;DR: The design rules and the resonant mechanisms that can lead to very efficient light-matter interactions in sub-wavelength nanostructure arrays are reviewed and the role of symmetries and free-space coupling of resonant structures is emphasized.
Journal ArticleDOI

Hollow metal nanostructures for enhanced plasmonics: synthesis, local plasmonic properties and applications

TL;DR: In this paper, the authors summarize the efforts on the synthesis of hollow metal nanostructures with an emphasis on the galvanic replacement reaction and discuss the advancements on the characterization of plasmonic properties of hollow nanostructure, covering the single nanoparticle experiments, nanoscale characterization via electron energy-loss spectroscopy and modeling and simulation studies.
References
More filters
Journal ArticleDOI

The rise of graphene

TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Journal ArticleDOI

Negative Refraction Makes a Perfect Lens

TL;DR: The authors' simulations show that a version of the lens operating at the frequency of visible light can be realized in the form of a thin slab of silver, which resolves objects only a few nanometers across.
Journal ArticleDOI

Surface plasmon subwavelength optics

TL;DR: By altering the structure of a metal's surface, the properties of surface plasmons—in particular their interaction with light—can be tailored, which could lead to miniaturized photonic circuits with length scales that are much smaller than those currently achieved.
Journal ArticleDOI

Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering

TL;DR: In this article, surface-enhanced Raman scattering was used to detect single molecules and single nanoparticles at room temperature with the use of surface enhanced Raman, and the intrinsic Raman enhancement factors were on the order of 10 14 to 10 15, much larger than the ensemble-averaged values derived from conventional measurements.
Journal ArticleDOI

One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications

TL;DR: A comprehensive review of 1D nanostructures can be found in this article, where the authors provide a comprehensive overview of current research activities that concentrate on one-dimensional (1D) nanostructure (wires, rods, belts and tubes).
Related Papers (5)