scispace - formally typeset
Open AccessJournal ArticleDOI

Neural coding of continuous speech in auditory cortex during monaural and dichotic listening

Nai Ding, +1 more
- 01 Jan 2012 - 
- Vol. 107, Iss: 1, pp 78-89
TLDR
These findings characterize how the spectrotemporal features of speech are encoded in human auditory cortex and establish a single-trial-based paradigm to study the neural basis underlying the cocktail party phenomenon.
Abstract
The cortical representation of the acoustic features of continuous speech is the foundation of speech perception. In this study, noninvasive magnetoencephalography (MEG) recordings are obtained from human subjects actively listening to spoken narratives, in both simple and cocktail party-like auditory scenes. By modeling how acoustic features of speech are encoded in ongoing MEG activity as a spectrotemporal response function, we demonstrate that the slow temporal modulations of speech in a broad spectral region are represented bilaterally in auditory cortex by a phase-locked temporal code. For speech presented monaurally to either ear, this phase-locked response is always more faithful in the right hemisphere, but with a shorter latency in the hemisphere contralateral to the stimulated ear. When different spoken narratives are presented to each ear simultaneously (dichotic listening), the resulting cortical neural activity precisely encodes the acoustic features of both of the spoken narratives, but slightly weakened and delayed compared with the monaural response. Critically, the early sensory response to the attended speech is considerably stronger than that to the unattended speech, demonstrating top-down attentional gain control. This attentional gain is substantial even during the subjects' very first exposure to the speech mixture and therefore largely independent of knowledge of the speech content. Together, these findings characterize how the spectrotemporal features of speech are encoded in human auditory cortex and establish a single-trial-based paradigm to study the neural basis underlying the cocktail party phenomenon.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

The effects of data quantity on performance of temporal response function analyses of natural speech processing

TL;DR: This work uses a dual-talker continuous speech paradigm to demonstrate how a key parameter of experimental design, the quantity of acquired data, influences TRF analyses fit to either individual data (subject-specific analyses), or group data (generic analyses).
Journal ArticleDOI

Unattended processing of hierarchical pitch variations in spoken sentences

TL;DR: The results suggest that, in an unattentive state, the human brain can functionally disentangle hierarchically different levels of pitch variation, and the brain responses to these pitch variations are time‐locked to the presence of the acoustic cues.
Posted ContentDOI

Contributions of local speech encoding and functional connectivity to audio-visual speech integration

TL;DR: A role of auditory-motor interactions in visual speech representations is demonstrated and functional connectivity along the ventral pathway facilitates speech comprehension in multisensory environments and is suggested to enhance functional connectivity between temporal and inferior frontal cortex.
Posted ContentDOI

Neural tracking of the fundamental frequency of the voice: male voices preferred

TL;DR: Results indicated that response strength is inversely related to f0 frequency and rate of f0 change throughout the story, and response strength greatly improves for voices with strong higher harmonics, which is particularly useful to boost the small responses evoked by voices with high f0.
References
More filters
Book

Elements of information theory

TL;DR: The author examines the role of entropy, inequality, and randomness in the design of codes and the construction of codes in the rapidly changing environment.
Journal ArticleDOI

The cortical organization of speech processing

TL;DR: A dual-stream model of speech processing is outlined that assumes that the ventral stream is largely bilaterally organized — although there are important computational differences between the left- and right-hemisphere systems — and that the dorsal stream is strongly left- Hemisphere dominant.
Journal ArticleDOI

Some Experiments on the Recognition of Speech, with One and with Two Ears

TL;DR: In this paper, the relation between the messages received by the two ears was investigated, and two types of test were reported: (a) the behavior of a listener when presented with two speech signals simultaneously (statistical filtering problem) and (b) behavior when different speech signals are presented to his two ears.
Journal ArticleDOI

Speech recognition with primarily temporal cues.

TL;DR: Nearly perfect speech recognition was observed under conditions of greatly reduced spectral information; the presentation of a dynamic temporal pattern in only a few broad spectral regions is sufficient for the recognition of speech.
Journal ArticleDOI

Electrical Signs of Selective Attention in the Human Brain

TL;DR: Auditory evoked potentials were recorded from the vertex of subjects who listened selectively to a series of tone pipping in one ear and ignored concurrent tone pips in the other ear to study the response set established to recognize infrequent, higher pitched tone pipped in the attended series.
Related Papers (5)