scispace - formally typeset
Journal ArticleDOI

New Carbon Materials: Biological Applications of Functionalized Nanodiamond Materials

Anke Krueger
- 08 Feb 2008 - 
- Vol. 14, Iss: 5, pp 1382-1390
TLDR
The surface structure and functionalisation of diamond nanoparticles are discussed, non-covalent as well as covalent grafting of bioactive moieties is possible, and first applications of fluorescent diamond nanop particles are described.
Abstract
Nanoscale diamond particles have become an interesting material. Due to their inertness, small size and surface structure, they are well-suited for biological applications, such as labelling and drug delivery. Here we discuss the surface structure and functionalisation of diamond nanoparticles. Non-covalent as well as covalent grafting of bioactive moieties is possible, and first applications of fluorescent diamond nanoparticles are described.

read more

Citations
More filters
Journal ArticleDOI

Luminescent Carbon Nanodots: Emergent Nanolights

TL;DR: This Review summarize recent advances in the synthesis and characterization of C-dots and speculate on their future and discuss potential developments for their use in energy conversion/storage, bioimaging, drug delivery, sensors, diagnostics, and composites.
Journal ArticleDOI

The properties and applications of nanodiamonds

TL;DR: The rational control of the mechanical, chemical, electronic and optical properties of nanodiamonds through surface doping, interior doping and the introduction of functional groups are discussed.
Journal ArticleDOI

Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology.

TL;DR: Chemistries that Facilitate Nanotechnology Kim E. Sapsford,† W. Russ Algar, Lorenzo Berti, Kelly Boeneman Gemmill,‡ Brendan J. Casey,† Eunkeu Oh, Michael H. Stewart, and Igor L. Medintz .
Journal ArticleDOI

Nanodiamond Particles: Properties and Perspectives for Bioapplications

TL;DR: This review critically examines the use of NDs for biomedical applications based on type (i.e., high-pressure high-temperature [HPHT], CVD diamond, detonation ND [DND]), post-synthesis processing and modifications, and resultant properties including bio-interfacing.
References
More filters
Journal ArticleDOI

Quantum-sized carbon dots for bright and colorful photoluminescence.

TL;DR: It is reported that nanoscale carbon particles (carbon dots) upon simple surface passivation are strongly photoluminescent in both solution and the solid state.
Journal ArticleDOI

Scanning confocal optical microscopy and magnetic resonance on single defect centers

TL;DR: In this article, the fluorescence of individual nitrogen-vacancy defect centers in diamond was observed with room-temperature scanning confocal optical microscopy, and the centers were photostable, showing no detectable change in their fluorescence emission spectrum as a function of time.
Journal ArticleDOI

Tribology of diamond-like carbon films: recent progress and future prospects

TL;DR: Diamond-like carbon (DLC) films have attracted an overwhelming interest from both industry and the research community as mentioned in this paper, and they offer a wide range of exceptional physical, mechanical, biomedical and tribological properties that make them commercially essential for numerous industrial applications.
Journal ArticleDOI

Bright Fluorescent Nanodiamonds: No Photobleaching and Low Cytotoxicity

TL;DR: The fluorescent nanodiamonds (FND) show no sign of photobleaching and can be taken up by mammalian cells with minimal cytotoxicity and the nanomaterial can have far-reaching biological applications.
Journal ArticleDOI

Characterization and application of single fluorescent nanodiamonds as cellular biomarkers

TL;DR: In this article, the authors presented the results of characterization and application of single fluorescent nanodiamonds as cellular biomarkers, and showed that under the same excitation conditions, the fluorescence of a single 35-nm diamond is significantly brighter than that of a simple dye molecule such as Alexa Fluor 546, which was photobleached in the range of 10 s at a laser power density of 104 W/cm2.
Related Papers (5)