scispace - formally typeset
Open AccessJournal ArticleDOI

Nitric oxide synthases: regulation and function.

Reads0
Chats0
TLDR
Nitric oxide (NO), the smallest signalling molecule known, is produced by three isoforms of NO synthase (NOS), which can be expressed in many cell types in response to lipopolysaccharide, cytokines, or other agents.
Abstract
Nitric oxide (NO), the smallest signalling molecule known, is produced by three isoforms of NO synthase (NOS; EC 1.14.13.39). They all utilize l-arginine and molecular oxygen as substrates and require the cofactors reduced nicotinamide-adenine-dinucleotide phosphate (NADPH), flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN), and (6R-)5,6,7,8-tetrahydrobiopterin (BH(4)). All NOS bind calmodulin and contain haem. Neuronal NOS (nNOS, NOS I) is constitutively expressed in central and peripheral neurons and some other cell types. Its functions include synaptic plasticity in the central nervous system (CNS), central regulation of blood pressure, smooth muscle relaxation, and vasodilatation via peripheral nitrergic nerves. Nitrergic nerves are of particular importance in the relaxation of corpus cavernosum and penile erection. Phosphodiesterase 5 inhibitors (sildenafil, vardenafil, and tadalafil) require at least a residual nNOS activity for their action. Inducible NOS (NOS II) can be expressed in many cell types in response to lipopolysaccharide, cytokines, or other agents. Inducible NOS generates large amounts of NO that have cytostatic effects on parasitic target cells. Inducible NOS contributes to the pathophysiology of inflammatory diseases and septic shock. Endothelial NOS (eNOS, NOS III) is mostly expressed in endothelial cells. It keeps blood vessels dilated, controls blood pressure, and has numerous other vasoprotective and anti-atherosclerotic effects. Many cardiovascular risk factors lead to oxidative stress, eNOS uncoupling, and endothelial dysfunction in the vasculature. Pharmacologically, vascular oxidative stress can be reduced and eNOS functionality restored with renin- and angiotensin-converting enzyme-inhibitors, with angiotensin receptor blockers, and with statins.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Chronic inflammation and cytokines in the tumor microenvironment.

TL;DR: The role of these cytokines in important events of carcinogenesis, such as their capacity to generate reactive oxygen and nitrogen species, their potential mutagenic effect, and their involvement in mechanisms for epithelial mesenchymal transition, angiogenesis, and metastasis are explored.
Journal ArticleDOI

Reperfusion injury and reactive oxygen species: The evolution of a concept.

TL;DR: The possibility that multiple ROS sources contribute to reperfusion injury in most tissues is supported by evidence demonstrating that redox-signaling enables ROS produced by one enzymatic source to activate and enhance ROS production by a second source.
Journal ArticleDOI

Roles of Vascular Oxidative Stress and Nitric Oxide in the Pathogenesis of Atherosclerosis

TL;DR: Prevention of vascular oxidative stress and improvement of endothelial NO production represent reasonable therapeutic strategies in addition to the treatment of established risk factors (hypercholesterolemia, hypertension, and diabetes mellitus).
Journal ArticleDOI

Current Mechanistic Concepts in Ischemia and Reperfusion Injury.

TL;DR: This review article presents recent advances focusing on the basic pathophysiology of ischemia-reperfusion injury, especially the involvement of reactive oxygen species and cell death pathways and highlights the latest mechanistic insights into reperfusion-injury-induced cell death via these different processes.
References
More filters
Journal ArticleDOI

Nitric oxide and macrophage function

TL;DR: Although the high-output NO pathway probably evolved to protect the host from infection, suppressive effects on lymphocyte proliferation and damage to other normal host cells confer upon NOS2 the same protective/destructive duality inherent in every other major component of the immune response.
Journal ArticleDOI

Nitric oxide synthases: structure, function and inhibition

TL;DR: This review concentrates on advances in nitric oxide synthase (NOS) structure, function and inhibition made in the last seven years, during which time substantial advances have been made in the authors' understanding of this enzyme family.
Journal ArticleDOI

Nitric oxide: an endogenous modulator of leukocyte adhesion.

TL;DR: Data suggest that endothelium-derived NO may be an important endogenous modulator of leukocyte adherence and that impairment of NO production results in a pattern ofLeukocyte adhesion and emigration that is characteristic of acute inflammation.
Journal ArticleDOI

NAD(P)H Oxidase: Role in Cardiovascular Biology and Disease

TL;DR: Vascular NAD(P)H oxidases have been found to be essential in the physiological response of vascular cells, including growth, migration, and modification of the extracellular matrix and have been linked to hypertension and to pathological states associated with uncontrolled growth and inflammation, such as atherosclerosis.
Journal ArticleDOI

Regulation of endothelium-derived nitric oxide production by the protein kinase Akt.

TL;DR: It is shown that the serine/threonine protein kinase Akt (protein kinase B) can directly phosphorylate eNOS on serine 1179 and activate the enzyme, leading to NO production, whereas mutant eN OS (S1179A) is resistant to phosphorylation and activation by Akt.
Related Papers (5)