scispace - formally typeset
Open AccessJournal ArticleDOI

Non-spherical core collapse supernovae. I. Neutrino-driven convection, Rayleigh-Taylor instabilities, and the formation and propagation of metal clumps

Reads0
Chats0
TLDR
In this article, a simulation of a type II explosion in a 15 M blue supergiant progenitor is presented, that confirms our earlier type II models and extends their validity to times as late as 5.5 hours after core bounce.
Abstract
We have performed two-dimensional simulations of core collapse supernovae that encompass shock revival by neutrino heating, neutrino-driven convection, explosive nucleosynthesis, the growth of Rayleigh-Taylor instabilities, and the propagation of newly formed metal clumps through the exploding star. A simulation of a type II explosion in a 15 M blue supergiant progenitor is presented, that confirms our earlier type II models and extends their validity to times as late as 5.5 hours after core bounce. We also study a type Ib-like explosion, by simply removing the hydrogen envelope of the progenitor model. This allows for a first comparison of type II and type Ib evolution. We present evidence that the hydrodynamics of core collapse supernovae beyond shock revival diers markedly from the results of simulations that have followed the Rayleigh-Taylor mixing starting from ad hoc energy deposition schemes to initiate the explosion. We find iron group elements to be synthesized in an anisotropic, dense, low-entropy shell that expands with velocities of17 000 km s 1 shortly after shock revival. The growth of Rayleigh-Taylor instabilities at the Si/ Oa nd (C+O)/He composition interfaces of the progenitor, seeded by the flow-structures resulting from neutrino-driven convection, leads to a fragmentation of this shell into metal-rich "clumps". This fragmentation starts already 20 s after core bounce and is complete within the first few minutes of the explosion. During this time the clumps are slowed down by drag, and by the positive pressure gradient in the unstable layers. However, at t 300 s they decouple from the flow and start to propagate ballistically and subsonically through the He core, with the maximum velocities of metals remaining constant at3500 5500 km s 1 . This early "clump decoupling" leads to significantly higher 56 Ni velocities at t= 300 s than in one-dimensional models of the explosion, demonstrating that multi-dimensional eects which are at work within the first minutes, and which have been neglected in previous studies (especially in those which dealt with the mixing in type II supernovae), are crucial. Despite comparably high initial maximum nickel velocities in both our type II and our type Ib-like model, we find that there are large dierences in the final maximum nickel velocities between both cases. In the "type Ib" model the maximum velocities of metals remain frozen in at3500 5500 km s 1 for t 300 s, while in the type II model they drop significantly for t > 1500 s. In the latter case, the massive hydrogen envelope of the progenitor forces the supernova shock to slow down strongly, leaving behind a reverse shock and a dense helium shell (or "wall") below the He/H interface. After penetrating into this dense material the metal-rich clumps possess supersonic speeds, before they are slowed down by drag forces to1200 km s 1 at a time of 20 000 s post-bounce. While, due to this deceleration, the maximum velocities of iron-group elements in SN 1987 A cannot be reproduced in case of the considered 15 M progenitor, the "type Ib" model is in fairly good agreement with observed clump velocities and the amount of mixing inferred for type Ib supernovae. Thus it appears promising for calculations of synthetic spectra and light curves. Furthermore, our simulations indicate that for type Ib explosions the pattern of clump formation in the ejecta is correlated with the structure of the convective pattern prevailing during the shock-revival phase. This might be used to deduce observational constraints for the dynamics during this early phase of the evolution, and the role of neutrino heating in initiating the explosion.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Explosion Mechanisms of Core-Collapse Supernovae

TL;DR: The neutrino-heating mechanism, aided by nonradial flows, drives explosions, albeit low-energy ones, of O-Ne-Mg-core and some Fe-core progenitors as mentioned in this paper.
Journal ArticleDOI

Core-Collapse Supernovae from 9 to 120 Solar Masses Based on Neutrino-powered Explosions

TL;DR: In this paper, a grid of supernovae resulting from massive stars with solar metallicity and masses from 9.0 to 120 solar masses are calculated for nucleosynthesis, light curves, explosion energies, and remnant masses.
Book

Physics of plasmas

TL;DR: In this article, the Equations of Gas Dynamics and Magnetoplasmas Dynamics were studied, as well as Magnetoplasma Stability and Transport in Magnetplasmas and Magnetic Stability.
Journal ArticleDOI

Nucleosynthesis yields of core-collapse supernovae and hypernovae, and galactic chemical evolution

TL;DR: In this article, the authors present new nucleosynthesis yields as functions of the stellar mass, metallicity, and explosion energy (corresponding to normal supernovae and hypernovae), and apply the results to the chemical evolution of the solar neighborhood.
Journal ArticleDOI

Experimental astrophysics with high power lasers and Z pinches

TL;DR: High energy density (HED) laboratory astrophysics as discussed by the authors is a new class of experimental science, wherein the properties of matter and the processes that occur under extreme astrophysical conditions can be examined in the laboratory.
References
More filters
Journal ArticleDOI

Postcollapse hydrodynamics of SN 1987A : two-dimensional simulations of the early evolution

TL;DR: In this paper, the first few seconds of the explosion of SN 1987A are modeled using a 2D cylindrical geometry smooth particle hydrodynamics code and the success of an explosion is determined to be sensitive to the duration of the infall, the timing of the bounce, and the subsequent neutrino heating.
Journal ArticleDOI

The hydrodynamics of Type II supernove

TL;DR: In this paper, the evolutionary phases of an explosion in a star with an extended envelope are described, and detailed hydrodynamic models have been calculated, assuming an initial radius compatible with stellar evolution and an energy compatible with the observed velocities.
Book

Supernovae and Supernova Remnants

TL;DR: In this paper, a relance l'interet de ces phases avancees de l'evolution stellaire and de nouvelles observations, interpretations, and modeles ont recemment ete presentes.
Journal ArticleDOI

The Expansion Center and Dynamical Age of the Galactic Supernova Remnant Cassiopeia A

TL;DR: In this article, proper motions for 21 bright main shell and 17 higher velocity, outer ejecta knots in the Cas A supernova remnant were used to derive new estimates for the remnant's expansion center and age.
Related Papers (5)