scispace - formally typeset
Open AccessJournal ArticleDOI

One-Shot Coherence Dilution

TLDR
This Letter establishes the one-shot theory of coherence dilution, which involves converting maximally coherent states into an arbitrary quantum state using maximally incoherent operations, dephasing-covariant incoherence operations, inco coherent operations, or strictly incoherent Operations.
Abstract
Manipulation and quantification of quantum resources are fundamental problems in quantum physics. In the asymptotic limit, coherence distillation and dilution have been proposed by manipulating infinite identical copies of states. In the nonasymptotic setting, finite data-size effects emerge, and the practically relevant problem of coherence manipulation using finite resources has been left open. This Letter establishes the one-shot theory of coherence dilution, which involves converting maximally coherent states into an arbitrary quantum state using maximally incoherent operations, dephasing-covariant incoherent operations, incoherent operations, or strictly incoherent operations. We introduce several coherence monotones with concrete operational interpretations that estimate the one-shot coherence cost---the minimum amount of maximally coherent states needed for faithful coherence dilution. Furthermore, we derive the asymptotic coherence dilution results with maximally incoherent operations, incoherent operations, and strictly incoherent operations as special cases. Our result can be applied in the analyses of quantum information processing tasks that exploit coherence as resources, such as quantum key distribution and random number generation.

read more

Citations
More filters
Journal ArticleDOI

Quantum resource theories

TL;DR: This paper introduced a new development in theoretical quantum physics, the ''resource-theoretic'' point of view, which aims to be closely linked to experiment, and to state exactly what result you can hope to achieve for what expenditure of effort in the laboratory.
Journal ArticleDOI

Secure quantum key distribution with realistic devices

TL;DR: This review gives both sides of the story, with the current best theory of quantum security, and an extensive survey of what makes quantum cryptosystem safe in practice.
Journal ArticleDOI

Quantum coherence and geometric quantum discord

TL;DR: This aim is to provide a full review about the resource theory of quantum coherence, including its application in many-body systems, and the discordlike quantum correlations which were defined based on the various distance measures of states.
Journal ArticleDOI

One-shot coherence distillation

TL;DR: It is established that the one-shot distillable coherence under MIO and DIO is efficiently computable with a semidefinite program, which is shown to correspond to a quantum hypothesis testing problem.
References
More filters
Book ChapterDOI

I and J

Journal ArticleDOI

A and V.

Journal ArticleDOI

Quantum entanglement

TL;DR: In this article, the basic aspects of entanglement including its characterization, detection, distillation, and quantification are discussed, and a basic role of entonglement in quantum communication within distant labs paradigm is discussed.
Journal ArticleDOI

Mixed State Entanglement and Quantum Error Correction

TL;DR: It is proved that an EPP involving one-way classical communication and acting on mixed state M (obtained by sharing halves of Einstein-Podolsky-Rosen pairs through a channel) yields a QECC on \ensuremath{\chi} with rate Q=D, and vice versa, and it is proved Q is not increased by adding one- way classical communication.
Journal ArticleDOI

Advances in quantum metrology

TL;DR: Quantum metrology is the use of quantum techniques such as entanglement to yield higher statistical precision than purely classical approaches as discussed by the authors, where the central limit theorem implies that the reduction is proportional to the square root of the number of repetitions.
Related Papers (5)