scispace - formally typeset
Open AccessJournal ArticleDOI

Onset of antiferromagnetism in heavy-fermion metals

Reads0
Chats0
TLDR
Evidence is found for an atomically local contribution to the magnetic correlations which develops at the critical gold concentration, corresponding to a magnetic ordering temperature of zero, which implies that a Fermi-liquid-destroying spin-localizing transition, unanticipated from the spin density wave description, coincides with the antiferromagnetic quantum critical point.
Abstract
There are two main theoretical descriptions of antiferromagnets. The first arises from atomic physics, which predicts that atoms with unpaired electrons develop magnetic moments. In a solid, the coupling between moments on nearby ions then yields antiferromagnetic order at low temperatures1. The second description, based on the physics of electron fluids or ‘Fermi liquids’, states that Coulomb interactions can drive the fluid to adopt a more stable configuration by developing a spin density wave2,3. It is at present unknown which view is appropriate at a ‘quantum critical point’, where the antiferromagnetic transition temperature vanishes4,5,6,7. Here we report neutron scattering and bulk magnetometry measurements of the metal CeCu6-xAux, which allow us to discriminate between the two models. We find evidence for an atomically local contribution to the magnetic correlations which develops at the critical gold concentration (xc = 0.1 ), corresponding to a magnetic ordering temperature of zero. This contribution implies that a Fermi-liquid-destroying spin-localizing transition, unanticipated from the spin density wave description, coincides with the antiferromagnetic quantum critical point.

read more

Citations
More filters
Journal ArticleDOI

Fermi-liquid instabilities at magnetic quantum phase transitions

TL;DR: In this article, the authors discuss the instabilities of the Fermi-liquid state of conduction electrons in metals with particular emphasis on magnetic quantum critical points, with the aim of assessing the validity of presently available theory.
Journal ArticleDOI

Quantum criticality in heavy-fermion metals

TL;DR: In this paper, the authors summarize some of the basic issues, including the extent to which the quantum criticality in heavy-fermion metals goes beyond the standard theory of order-parameter fluctuations, the nature of the Kondo effect in the quantum-critical regime, the non-Fermi-liquid phenomena that accompany quantum criticalities and the interplay between quantum criticalness and unconventional superconductivity.
Journal ArticleDOI

Locally critical quantum phase transitions in strongly correlated metals

TL;DR: The theoretical finding of a locally critical quantum phase transition in a model of heavy fermions is reported, and local criticality is proposed to be a phenomenon of general relevance to strongly correlated metals.

Locally critical quantum phase transitions in strongly correlated metals

TL;DR: In this article, the authors reported a locally critical quantum phase transition in a model of heavy fermions and proposed local criticality to be a phenomenon of general relevance to strongly correlated metals.
Journal ArticleDOI

Lensless imaging of magnetic nanostructures by X-ray spectro-holography

TL;DR: This work demonstrates a versatile technique for imaging nanostructures, based on the use of resonantly tuned soft X-rays for scattering contrast and the direct Fourier inversion of a holographically formed interference pattern, which is a form of Fourier transform holography and appears scalable to diffraction-limited resolution.
References
More filters
Journal ArticleDOI

New Approach to the Theory of Superexchange Interactions

TL;DR: In this article, the theory of indirect exchange in poor conductors is examined from a new viewpoint in which the $d$ (or $f$) shell electrons are placed in wave functions assumed to be exact solutions of the problem of a single $d-electron in the presence of the full diamagnetic lattice.
Journal ArticleDOI

Quantum critical phenomena

TL;DR: In this paper, the authors proposed an approach to the study of critical phenomena in quantum-mechanical systems at zero or low temperatures, where classical free-energy functionals of the Landau-Ginzburg-Wilson sort are not valid.
Journal ArticleDOI

Effect of a nonzero temperature on quantum critical points in itinerant fermion systems

TL;DR: I reexamine the work of Hertz on quantum phase transitions in itinerant fermion systems and obtains different regimes of behavior of the correlation length and free energy in the disordered phase of the effective bosonic theory.
Journal ArticleDOI

Phenomenology of the normal state of Cu-O high-temperature superconductors.

TL;DR: The universal anomalies in the normal state of Cu-O high-temperature superconductors follow from a single hypothesis: There exist charge- and spin-density excitations with the absorptive part of the polarizability at low frequencies proportional to T, where T is the temperature, and constant otherwise.
Journal ArticleDOI

Magnetically mediated superconductivity in heavy fermion compounds

TL;DR: In this article, it was shown that the charge carriers are bound together in pairs by magnetic spin-spin interactions in heavy fermion superconductors CePd2Si2 and CeIn3.
Related Papers (5)