scispace - formally typeset
Journal ArticleDOI

Optical near-field mapping of plasmonic nanoprisms.

Reads0
Chats0
TLDR
Interferometric homodyne tip-scattering near-field microscopy is used for plasmonic near- field imaging of crystalline triangular silver nanoprisms to provide critical information for the selection of particle geometries as building blocks for plAsmonic device applications.
Abstract
The optical local-field enhancement on nanometer length scales provides the basis for plasmonic metal nanostructures to serve as molecular sensors and as nanophotonic devices. However, particle morphology and the associated surface plasmon resonance alone do not uniquely reflect the important details of the local field distribution. Here, we use interferometric homodyne tip-scattering near-field microscopy for plasmonic near-field imaging of crystalline triangular silver nanoprisms. Strong spatial field variation on lengths scales as short as 20 nm are observed sensitively depending on structural details and environment. The poles of the dipole and quadrupole plasmon modes, as identified by phase-sensitive probing and calculations performed in the discrete dipole approximation (DDA), reflect the particle symmetry. Together with the observation that the largest enhancement is not necessarily found to be associated with the tips of the nanoprisms, our results provide critical information for the selection of particle geometries as building blocks for plasmonic device applications.

read more

Citations
More filters
Journal ArticleDOI

Controlling the synthesis and assembly of silver nanostructures for plasmonic applications

TL;DR: In plasmonics, the metal nanostructures can serve as antennas to convert light into localized electric fields (E-fields) or as waveguides to route light to desired locations with nanometer precision through a strong interaction between incident light and free electrons in the nanostructure.
Journal ArticleDOI

Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters.

TL;DR: Plasmonic resonances in nanoantennas overcome constraints on the resolution to which an object can be imaged, as well as the size of the transverse cross section of efficient guiding structures to the wavelength dimension, allowing unprecedented control of light-matter interactions within subwavelength volumes.
Journal ArticleDOI

Optical excitations in electron microscopy

TL;DR: In this paper, a quantum-mechanical description of the interaction between the electrons and the sample is discussed, followed by a powerful classical dielectric approach that can be in practice applied to more complex systems.
Journal ArticleDOI

Properties and Applications of Colloidal Nonspherical Noble Metal Nanoparticles

TL;DR: This Review highlights morphology-dependent properties of nonspherical noble metal nanoparticles with a focus on localized surface plasmon resonance and local field enhancement, as well as their applications in various fields including Raman spectroscopy, fluorescence enhancement, analytics and sensing, photothermal therapy, (bio-)diagnostics, and imaging.
Journal Article

Mapping surface plasmons on a single metallic nanoparticle

TL;DR: In this paper, the authors used electron beams instead of photons to detect plasmons as resonance peaks in the energy-loss spectra of sub-nanometre electron beams rastered on nanoparticles of well-defined geometrical parameters.
References
More filters
Journal ArticleDOI

The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment

TL;DR: In this paper, the authors describe recent progress in the theory of nanoparticle optical properties, particularly methods for solving Maxwell's equations for light scattering from particles of arbitrary shape in a complex environment.
Book

Optical Properties of Metal Clusters

TL;DR: In this paper, the authors present a survey of optical spectra of Elemental Metal Clusters and Chain Aggregates and discuss experimental results and experimental methods for metal clustering experiments.
Journal ArticleDOI

Shape-Controlled Synthesis of Gold and Silver Nanoparticles

TL;DR: Monodisperse samples of silver nanocubes were synthesized in large quantities by reducing silver nitrate with ethylene glycol in the presence of poly(vinyl pyrrolidone) (PVP), characterized by a slightly truncated shape bounded by {100, {110}, and {111} facets.
Journal ArticleDOI

Plasmonics: merging photonics and electronics at nanoscale dimensions.

TL;DR: The current status and future prospects of plAsmonics in various applications including plasmonic chips, light generation, and nanolithography are reviewed.
Journal ArticleDOI

Discrete-Dipole Approximation For Scattering Calculations

TL;DR: In this article, the authors used the discrete-dipole approximation (DDA) for scattering calculations, including the relationship between the DDA and other methods, including complex-conjugate gradient algorithms and fast-Fourier transform methods.
Related Papers (5)