scispace - formally typeset
Open AccessJournal ArticleDOI

Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.).

Reads0
Chats0
TLDR
It is demonstrated that miR319 plays important roles in leaf morphogenesis and cold tolerance in rice and genetically down-regulating the expression of either of the two miR 319-targeted genes in RNA interference plants resulted in enhanced cold tolerance after chilling acclimation.
Abstract
MicroRNA319 (miR319) family is one of the conserved microRNA (miRNA) families among diverse plant species. It has been reported that miR319 regulates plant development in dicotyledons, but little is known at present about its functions in monocotyledons. In rice (Oryza sativa L.), the MIR319 gene family comprises two members, Osa-MIR319a and Osa-MIR319b. Here, we report an expression pattern analysis and a functional characterization of the two Osa-MIR319 genes in rice. We found that overexpressing Osa-MIR319a and Osa-MIR319b in rice both resulted in wider leaf blades. Leaves of osa-miR319 overexpression transgenic plants showed an increased number of longitudinal small veins, which probably accounted for the increased leaf blade width. In addition, we observed that overexpressing osa-miR319 led to enhanced cold tolerance (4 °C) after chilling acclimation (12 °C) in transgenic rice seedlings. Notably, under both 4 and 12 °C low temperatures, Osa-MIR319a and Osa-MIR319b were down-regulated while the expression of miR319-targeted genes was induced. Furthermore, genetically down-regulating the expression of either of the two miR319-targeted genes, OsPCF5 and OsPCF8, in RNA interference (RNAi) plants also resulted in enhanced cold tolerance after chilling acclimation. Our findings in this study demonstrate that miR319 plays important roles in leaf morphogenesis and cold tolerance in rice.

read more

Citations
More filters
Journal ArticleDOI

Blocking IbmiR319a Impacts Plant Architecture and Reduces Drought Tolerance in Sweet Potato

TL;DR: In this paper , two members of the miR319 gene family were discovered in the sweet potato (Ipomoea batatas [L.] Lam), and the biological function and potential molecular mechanism of the response of microRNA319a to drought stress in sweet potato was investigated.
Journal ArticleDOI

Novel approaches on identification of conserved miRNAs for broad-spectrum Potyvirus control measures

TL;DR: In this article, the authors predicted evolutionarily conserved miRNAs by BLAST searching of reported miRNA from 15 plants against the GSS and EST sequences of banana and found that miR168 and miR162 are conserved among all the selected plants.
Book ChapterDOI

Negative Regulators of Messenger RNA and the Role of microRNA for Plant Genetic Engineering

TL;DR: This chapter introduces the biogenesis and mechanisms of small noncoding RNA-mediated gene silencing, followed by an overview on the most recent progress of these small RNAs and strategies for manipulating them in plant genetic modification.
Journal ArticleDOI

Metabolic Profiling of Oryza sativa L. Triggered by Chilling Stress Using Ultraperformance Liquid Chromatography Coupled with Quadrupole/Time-of-Flight Mass Spectrometry (UPLC-QTOF-MS) with Transcriptome Analysis.

TL;DR: Wang et al. as mentioned in this paper showed that chilling stress induced distinct metabolic profiles associated with transcriptome regulation, exhibiting great metabolic differences between Qiutianxiaoting and 93-11 (indica).
References
More filters
Journal ArticleDOI

MicroRNAs: Genomics, Biogenesis, Mechanism, and Function

TL;DR: Although they escaped notice until relatively recently, miRNAs comprise one of the more abundant classes of gene regulatory molecules in multicellular organisms and likely influence the output of many protein-coding genes.
Journal ArticleDOI

MicroRNAs: Target Recognition and Regulatory Functions

TL;DR: The current understanding of miRNA target recognition in animals is outlined and the widespread impact of miRNAs on both the expression and evolution of protein-coding genes is discussed.
Journal ArticleDOI

miRBase: tools for microRNA genomics

TL;DR: The overlap of miRNA sequences with annotated transcripts, both protein- and non-coding, are described and graphical views of the locations of a wide range of genomic features in model organisms allow for the first time the prediction of the likely boundaries of many miRNA primary transcripts.
Journal ArticleDOI

MicroRNA genes are transcribed by RNA polymerase II.

TL;DR: The first direct evidence that miRNA genes are transcribed by RNA polymerase II (pol II) is presented and the detailed structure of a miRNA gene is described, for the first time, by determining the promoter and the terminator of mir‐23a∼27a‐24‐2.
Journal ArticleDOI

Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA.

TL;DR: A large number of morphologically normal, fertile, transgenic rice plants were obtained by co-cultivation of rice tissues with Agrobacterium tumefaciens, and sequence analysis revealed that the boundaries of the T-DNA in transgenic Rice plants were essentially identical to those intransgenic dicotyledons.
Related Papers (5)