scispace - formally typeset
Search or ask a question

Showing papers in "Nucleic Acids Research in 2007"


Journal ArticleDOI
TL;DR: SILVA (from Latin silva, forest), was implemented to provide a central comprehensive web resource for up to date, quality controlled databases of aligned rRNA sequences from the Bacteria, Archaea and Eukarya domains.
Abstract: Sequencing ribosomal RNA (rRNA) genes is currently the method of choice for phylogenetic reconstruction, nucleic acid based detection and quantification of microbial diversity. The ARB software suite with its corresponding rRNA datasets has been accepted by researchers worldwide as a standard tool for large scale rRNA analysis. However, the rapid increase of publicly available rRNA sequence data has recently hampered the maintenance of comprehensive and curated rRNA knowledge databases. A new system, SILVA (from Latin silva, forest), was implemented to provide a central comprehensive web resource for up to date, quality controlled databases of aligned rRNA sequences from the Bacteria, Archaea and Eukarya domains. All sequences are checked for anomalies, carry a rich set of sequence associated contextual information, have multiple taxonomic classifications, and the latest validly described nomenclature. Furthermore, two precompiled sequence datasets compatible with ARB are offered for download on the SILVA website: (i) the reference (Ref) datasets, comprising only high quality, nearly full length sequences suitable for in-depth phylogenetic analysis and probe design and (ii) the comprehensive Parc datasets with all publicly available rRNA sequences longer than 300 nucleotides suitable for biodiversity analyses. The latest publicly available database release 91 (August 2007) hosts 547 521 sequences split into 461 823 small subunit and 85 689 large subunit rRNAs.

5,733 citations


Journal ArticleDOI
TL;DR: KEGG PATHWAY is now supplemented with a new global map of metabolic pathways, which is essentially a combined map of about 120 existing pathway maps, and the KEGG resource is being expanded to suit the needs for practical applications.
Abstract: KEGG (http://www.genome.jp/kegg/) is a database of biological systems that integrates genomic, chemical and systemic functional information. KEGG provides a reference knowledge base for linking genomes to life through the process of PATHWAY mapping, which is to map, for example, a genomic or transcriptomic content of genes to KEGG reference pathways to infer systemic behaviors of the cell or the organism. In addition, KEGG provides a reference knowledge base for linking genomes to the environment, such as for the analysis of drug-target relationships, through the process of BRITE mapping. KEGG BRITE is an ontology database representing functional hierarchies of various biological objects, including molecules, cells, organisms, diseases and drugs, as well as relationships among them. KEGG PATHWAY is now supplemented with a new global map of metabolic pathways, which is essentially a combined map of about 120 existing pathway maps. In addition, smaller pathway modules are defined and stored in KEGG MODULE that also contains other functional units and complexes. The KEGG resource is being expanded to suit the needs for practical applications. KEGG DRUG contains all approved drugs in the US and Japan, and KEGG DISEASE is a new database linking disease genes, pathways, drugs and diagnostic markers.

5,352 citations


Journal ArticleDOI
TL;DR: Results from running RNAmmer on a large set of genomes indicate that the location of rRNAs can be predicted with a very high level of accuracy.
Abstract: The publication of a complete genome sequence is usually accompanied by annotations of its genes. In contrast to protein coding genes, genes for ribosomal RNA (rRNA) are often poorly or inconsistently annotated. This makes comparative studies based on rRNA genes difficult. We have therefore created computational predictors for the major rRNA species from all kingdoms of life and compiled them into a program called RNAmmer. The program uses hidden Markov models trained on data from the 5S ribosomal RNA database and the European ribosomal RNA database project. A pre-screening step makes the method fast with little loss of sensitivity, enabling the analysis of a complete bacterial genome in less than a minute. Results from running RNAmmer on a large set of genomes indicate that the location of rRNAs can be predicted with a very high level of accuracy. Novel, unannotated rRNAs are also predicted in many genomes. The software as well as the genome analysis results are available at the CBS web server.

4,949 citations


Journal ArticleDOI
TL;DR: The overlap of miRNA sequences with annotated transcripts, both protein- and non-coding, are described and graphical views of the locations of a wide range of genomic features in model organisms allow for the first time the prediction of the likely boundaries of many miRNA primary transcripts.
Abstract: miRBase is the central online repository for microRNA (miRNA) nomenclature, sequence data, annotation and target prediction. The current release (10.0) contains 5071 miRNA loci from 58 species, expressing 5922 distinct mature miRNA sequences: a growth of over 2000 sequences in the past 2 years. miRBase provides a range of data to facilitate studies of miRNA genomics: all miRNAs are mapped to their genomic coordinates. Clusters of miRNA sequences in the genome are highlighted, and can be defined and retrieved with any inter-miRNA distance. The overlap of miRNA sequences with annotated transcripts, both protein- and non-coding, are described. Finally, graphical views of the locations of a wide range of genomic features in model organisms allow for the first time the prediction of the likely boundaries of many miRNA primary transcripts. miRBase is available at http://microrna.sanger.ac.uk/.

4,493 citations


Journal ArticleDOI
TL;DR: The quality scores of a protein are displayed in the context of all known protein structures and problematic parts of a structure are shown and highlighted in a 3D molecule viewer in the ProSA-web service.
Abstract: A major problem in structural biology is the recognition of errors in experimental and theoretical models of protein structures. The ProSA program (Protein Structure Analysis) is an established tool which has a large user base and is frequently employed in the refinement and validation of experimental protein structures and in structure prediction and modeling. The analysis of protein structures is generally a difficult and cumbersome exercise. The new service presented here is a straightforward and easy to use extension of the classic ProSA program which exploits the advantages of interactive web-based applications for the display of scores and energy plots that highlight potential problems spotted in protein structures. In particular, the quality scores of a protein are displayed in the context of all known protein structures and problematic parts of a structure are shown and highlighted in a 3D molecule viewer. The service specifically addresses the needs encountered in the validation of protein structures obtained from X-ray analysis, NMR spectroscopy and theoretical calculations. ProSA-web is accessible at https://prosa.services.came.sbg.ac.at.

4,095 citations


Journal ArticleDOI
TL;DR: MolProbity is a general-purpose web server offering quality validation for 3D structures of proteins, nucleic acids and complexes that provides detailed all-atom contact analysis of any steric problems within the molecules as well as updated dihedral-angle diagnostics.
Abstract: MolProbity is a general-purpose web server offering quality validation for 3D structures of proteins, nucleic acids and complexes. It provides detailed all-atom contact analysis of any steric problems within the molecules as well as updated dihedral-angle diagnostics, and it can calculate and display the H-bond and van der Waals contacts in the interfaces between components. An integral step in the process is the addition and full optimization of all hydrogen atoms, both polar and nonpolar. New analysis functions have been added for RNA, for interfaces, and for NMR ensembles. Additionally, both the web site and major component programs have been rewritten to improve speed, convenience, clarity and integration with other resources. MolProbity results are reported in multiple forms: as overall numeric scores, as lists or charts of local problems, as downloadable PDB and graphics files, and most notably as informative, manipulable 3D kinemage graphics shown online in the KiNG viewer. This service is available free to all users at http://molprobity.biochem.duke.edu.

3,638 citations


Journal ArticleDOI
TL;DR: An implementation of a rapid method to automatically assign K numbers to genes in the genome, enabling reconstruction of KEGG pathways and BRITE hierarchies and achieving a high degree of accuracy when compared with the manually curated K EGG GENES database.
Abstract: The number of complete and draft genomes is rapidly growing in recent years, and it has become increasingly important to automate the identification of functional properties and biological roles of genes in these genomes. In the KEGG database, genes in complete genomes are annotated with the KEGG orthology (KO) identifiers, or the K numbers, based on the best hit information using Smith-Waterman scores as well as by the manual curation. Each K number represents an ortholog group of genes, and it is directly linked to an object in the KEGG pathway map or the BRITE functional hierarchy. Here, we have developed a web-based server called KAAS (KEGG Automatic Annotation Server: http://www.genome.jp/kegg/kaas/) i.e. an implementation of a rapid method to automatically assign K numbers to genes in the genome, enabling reconstruction of KEGG pathways and BRITE hierarchies. The method is based on sequence similarities, bi-directional best hit information and some heuristics, and has achieved a high degree of accuracy when compared with the manually curated KEGG GENES database.

3,220 citations


Journal ArticleDOI
TL;DR: The BioCyc PGDBs generated by SRI are offered for adoption by any interested party for the ongoing integration of metabolic and genome-related information about an organism.
Abstract: The MetaCyc database (MetaCyc.org) is a comprehensive and freely accessible resource for metabolic pathways and enzymes from all domains of life. The pathways in MetaCyc are experimentally determined, small-molecule metabolic pathways and are curated from the primary scientific literature. With more than 1400 pathways, MetaCyc is the largest collection of metabolic pathways currently available. Pathways reactions are linked to one or more well-characterized enzymes, and both pathways and enzymes are annotated with reviews, evidence codes, and literature citations. BioCyc (BioCyc.org) is a collection of more than 500 organism-specific Pathway/Genome Databases (PGDBs). Each BioCyc PGDB contains the full genome and predicted metabolic network of one organism. The network, which is predicted by the Pathway Tools software using MetaCyc as a reference, consists of metabolites, enzymes, reactions and metabolic pathways. BioCyc PGDBs also contain additional features, such as predicted operons, transport systems, and pathway hole-fillers. The BioCyc Web site offers several tools for the analysis of the PGDBs, including Omics Viewers that enable visualization of omics datasets on two different genome-scale diagrams and tools for comparative analysis. The BioCyc PGDBs generated by SRI are offered for adoption by any party interested in curation of metabolic, regulatory, and genome-related information about an organism.

2,973 citations


Journal ArticleDOI
TL;DR: WoLF PSORT converts protein amino acid sequences into numerical localization features; based on sorting signals, amino acid composition and functional motifs such as DNA-binding motifs, which allows a user to understand the evidence (or lack thereof) behind the predictions made for particular proteins.
Abstract: WoLF PSORT is an extension of the PSORT II program for protein subcellular location prediction. WoLF PSORT converts protein amino acid sequences into numerical localization features; based on sorting signals, amino acid composition and functional motifs such as DNA-binding motifs. After conversion, a simple k-nearest neighbor classifier is used for prediction. Using html, the evidence for each prediction is shown in two ways: (i) a list of proteins of known localization with the most similar localization features to the query, and (ii) tables with detailed information about individual localization features. For convenience, sequence alignments of the query to similar proteins and links to UniProt and Gene Ontology are provided. Taken together, this information allows a user to understand the evidence (or lack thereof) behind the predictions made for particular proteins. WoLF PSORT is available at wolfpsort.org

2,878 citations


Journal ArticleDOI
TL;DR: The Human Metabolome Database is designed to address the broad needs of biochemists, clinical chemists, physicians, medical geneticists, nutritionists and members of the metabolomics community.
Abstract: The Human Metabolome Database (HMDB) is currently the most complete and comprehensive curated collection of human metabolite and human metabolism data in the world. It contains records for more than 2180 endogenous metabolites with information gathered from thousands of books, journal articles and electronic databases. In addition to its comprehensive literature-derived data, the HMDB also contains an extensive collection of experimental metabolite concentration data compiled from hundreds of mass spectra (MS) and Nuclear Magnetic resonance (NMR) metabolomic analyses performed on urine, blood and cerebrospinal fluid samples. This is further supplemented with thousands of NMR and MS spectra collected on purified, reference metabolites. Each metabolite entry in the HMDB contains an average of 90 separate data fields including a comprehensive compound description, names and synonyms, structural information, physico-chemical data, reference NMR and MS spectra, biofluid concentrations, disease associations, pathway information, enzyme data, gene sequence data, SNP and mutation data as well as extensive links to images, references and other public databases. Extensive searching, relational querying and data browsing tools are also provided. The HMDB is designed to address the broad needs of biochemists, clinical chemists, physicians, medical geneticists, nutritionists and members of the metabolomics community. The HMDB is available at: www.hmdb.ca

2,670 citations


Journal ArticleDOI
TL;DR: The web resource provides users with functional information about the growing number of microRNAs and their interaction with target genes in many species and facilitates novel discoveries in microRNA gene regulation.
Abstract: MicroRNA.org (http://www.microrna.org) is a comprehensive resource of microRNA target predictions and expression profiles. Target predictions are based on a development of the miRanda algorithm which incorporates current biological knowledge on target rules and on the use of an up-to-date compendium of mammalian microRNAs. MicroRNA expression profiles are derived from a comprehensive sequencing project of a large set of mammalian tissues and cell lines of normal and disease origin. Using an improved graphical interface, a user can explore (i) the set of genes that are potentially regulated by a particular microRNA, (ii) the implied cooperativity of multiple microRNAs on a particular mRNA and (iii) microRNA expression profiles in various tissues. To facilitate future updates and development, the microRNA.org database structure and software architecture is flexibly designed to incorporate new expression and target discoveries. The web resource provides users with functional information about the growing number of microRNAs and their interaction with target genes in many species and facilitates novel discoveries in microRNA gene regulation.

Journal ArticleDOI
TL;DR: A new web interface to the popular Primer3 primer design program, developed in close collaboration with molecular biologists and technicians regularly designing primers, that provides an intuitive user interface using present-day web technologies and allows easy expansion or integration of external software packages.
Abstract: Here we present Primer3Plus, a new web interface to the popular Primer3 primer design program as an enhanced alternative for the CGI- scripts that come with Primer3. Primer3 consists of a command line program and a web interface. The web interface is one large form showing all of the possible options. This makes the interface powerful, but at the same time confusing for occasional users. Primer3Plus provides an intuitive user interface using present-day web technologies and has been developed in close collaboration with molecular biologists and technicians regularly designing primers. It focuses on the task at hand, and hides detailed settings from the user until these are needed. We also added functionality to automate specific tasks like designing primers for cloning or step-wise sequencing. Settings and designed primer sequences can be stored locally for later use. Primer3Plus supports a range of common sequence formats, such as FASTA. Finally, primers selected by Primer3Plus can be sent to an order form, allowing tight integration into laboratory ordering systems. Moreover, the open architecture of Primer3Plus allows easy expansion or integration of external software packages. The Primer3Plus Perl source code is available under GPL license from SourceForge. Primer3Plus is available at http://www.bioinformatics.nl/primer3plus.

Journal ArticleDOI
Lei Kong1, Yong Zhang1, Zhi-Qiang Ye1, Xiaoqiao Liu1, Shuqi Zhao1, Liping Wei1, Ge Gao1 
TL;DR: A support vector machine-based classifier, named Coding Potential Calculator (CPC), to assess the protein-coding potential of a transcript based on six biologically meaningful sequence features, which can discriminate coding from noncoding transcripts with high accuracy.
Abstract: Recent transcriptome studies have revealed that a large number of transcripts in mammals and other organisms do not encode proteins but function as noncoding RNAs (ncRNAs) instead. As millions of transcripts are generated by large-scale cDNA and EST sequencing projects every year, there is a need for automatic methods to distinguish protein-coding RNAs from noncoding RNAs accurately and quickly. We developed a support vector machine-based classifier, named Coding Potential Calculator (CPC), to assess the protein-coding potential of a transcript based on six biologically meaningful sequence features. Tenfold cross-validation on the training dataset and further testing on several large datasets showed that CPC can discriminate coding from noncoding transcripts with high accuracy. Furthermore, CPC also runs an order-of-magnitude faster than a previous state-of-the-art tool and has higher accuracy. We developed a user-friendly web-based interface of CPC at http://cpc.cbi.pku.edu.cn. In addition to predicting the coding potential of the input transcripts, the CPC web server also graphically displays detailed sequence features and additional annotations of the transcript that may facilitate users’ further investigation.

Journal ArticleDOI
TL;DR: The expanded DAVID Knowledgebase now integrates almost all major and well-known public bioinformatics resources centralized by the DAVID Gene Concept, a single-linkage method to agglomerate tens of millions of diverse gene/protein identifiers and annotation terms from a variety of public bio informatics databases.
Abstract: All tools in the DAVID Bioinformatics Resources aim to provide functional interpretation of large lists of genes derived from genomic studies. The newly updated DAVID Bioinformatics Resources consists of the DAVID Knowledgebase and five integrated, web-based functional annotation tool suites: the DAVID Gene Functional Classification Tool, the DAVID Functional Annotation Tool, the DAVID Gene ID Conversion Tool, the DAVID Gene Name Viewer and the DAVID NIAID Pathogen Genome Browser. The expanded DAVID Knowledgebase now integrates almost all major and well-known public bioinformatics resources centralized by the DAVID Gene Concept, a single-linkage method to agglomerate tens of millions of diverse gene/protein identifiers and annotation terms from a variety of public bioinformatics databases. For any uploaded gene list, the DAVID Resources now provides not only the typical gene-term enrichment analysis, but also new tools and functions that allow users to condense large gene lists into gene functional groups, convert between gene/protein identifiers, visualize many-genes-to-many-terms relationships, cluster redundant and heterogeneous terms into groups, search for interesting and related genes or terms, dynamically view genes from their lists on bio-pathways and more. With DAVID (http://david. niaid.nih.gov), investigators gain more power to interpret the biological mechanisms associated with large gene lists.

Journal ArticleDOI
TL;DR: CRISPRFinder is described, a web service offering tools to detect CRISPRs including the shortest ones including one or two motifs, define DRs and extract spacers, and get the flanking sequences to determine the leader.
Abstract: Clustered regularly interspaced short palindromic repeats (CRISPRs) constitute a particular family of tandem repeats found in a wide range of prokaryotic genomes (half of eubacteria and almost all archaea). They consist of a succession of highly conserved regions (DR) varying in size from 23 to 47 bp, separated by similarly sized unique sequences (spacer) of usually viral origin. A CRISPR cluster is flanked on one side by an AT-rich sequence called the leader and assumed to be a transcriptional promoter. Recent studies suggest that this structure represents a putative RNA-interference-based immune system. Here we describe CRISPRFinder, a web service offering tools to (i) detect CRISPRs including the shortest ones (one or two motifs); (ii) define DRs and extract spacers; (iii) get the flanking sequences to determine the leader; (iv) blast spacers against Genbank database and (v) check if the DR is found elsewhere in prokaryotic sequenced genomes. CRISPRFinder is freely accessible at http://crispr.u-psud.fr/Server/CRISPRfinder.php.

Journal ArticleDOI
TL;DR: The significantly expanded PDB2PQR is reported that includes robust standalone command line support, improved pKa estimation via the PROPKA framework, ligand parameterization via PEOE_PB charge methodology, expanded set of force fields and easily incorporated user-defined parameters via XML input files, and improvement of atom addition and optimization code.
Abstract: Real-world observable physical and chemical characteristics are increasingly being calculated from the 3D structures of biomolecules. Methods for calculating pK(a) values, binding constants of ligands, and changes in protein stability are readily available, but often the limiting step in computational biology is the conversion of PDB structures into formats ready for use with biomolecular simulation software. The continued sophistication and integration of biomolecular simulation methods for systems- and genome-wide studies requires a fast, robust, physically realistic and standardized protocol for preparing macromolecular structures for biophysical algorithms. As described previously, the PDB2PQR web server addresses this need for electrostatic field calculations (Dolinsky et al., Nucleic Acids Research, 32, W665-W667, 2004). Here we report the significantly expanded PDB2PQR that includes the following features: robust standalone command line support, improved pK(a) estimation via the PROPKA framework, ligand parameterization via PEOE_PB charge methodology, expanded set of force fields and easily incorporated user-defined parameters via XML input files, and improvement of atom addition and optimization code. These features are available through a new web interface (http://pdb2pqr.sourceforge.net/), which offers users a wide range of options for PDB file conversion, modification and parameterization.

Journal ArticleDOI
Zhao Xu1, Hao Wang1
TL;DR: LTR_FINDER is a system capable of scanning large-scale sequences rapidly and the first web server for ab initio LTR retrotransposon finding and illustrated its usage and performance on the genome of Saccharomyces cerevisiae.
Abstract: Long terminal repeat retrotransposons (LTR elements) are ubiquitous eukaryotic transposable elements. They play important roles in the evolution of genes and genomes. Ever-growing amount of genomic sequences of many organisms present a great challenge to fast identifying them. That is the first and indispensable step to study their structure, distribution, functions and other biological impacts. However, until today, tools for efficient LTR retrotransposon discovery are very limited. Thus, we developed LTR_FINDER web server. Given DNA sequences, it predicts locations and structure of full-length LTR retrotransposons accurately by considering common structural features. LTR_FINDER is a system capable of scanning large-scale sequences rapidly and the first web server for ab initio LTR retrotransposon finding. We illustrate its usage and performance on the genome of Saccharomyces cerevisiae. The web server is freely accessible at http://tlife.fudan.edu.cn/ltr_finder/.

Journal ArticleDOI
TL;DR: A hidden Markov model, Phobius, is designed that combines transmembrane topology and signal peptide predictions, and also allows constrained and homology-enriched predictions.
Abstract: When using conventional transmembrane topology and signal peptide predictors, such as TMHMM and SignalP, there is a substantial overlap between these two types of predictions. Applying these methods to five complete proteomes, we found that 30–65% of all predicted signal peptides and 25–35% of all predicted transmembrane topologies overlap. This impairs predictions of 5–10% of the proteome, hence this is an important issue in protein annotation. To address this problem, we previously designed a hidden Markov model, Phobius, that combines transmembrane topology and signal peptide predictions. The method makes an optimal choice between transmembrane segments and signal peptides, and also allows constrained and homologyenriched predictions. We here present a web interface (http:// phobius.cgb.ki.se and http://phobius.binf.ku.dk) to access Phobius.

Journal ArticleDOI
TL;DR: A summary of the GEO database structure and user facilities is provided, and recent enhancements to database design, performance, submission format options, data query and retrieval utilities are described.
Abstract: The Gene Expression Omnibus (GEO) repository at the National Center for Biotechnology Information (NCBI) archives and freely disseminates microarray and other forms of high-throughput data generated by the scientific community. The database has a minimum information about a microarray experiment (MIAME)-compliant infrastructure that captures fully annotated raw and processed data. Several data deposit options and formats are supported, including web forms, spreadsheets, XML and Simple Omnibus Format in Text (SOFT). In addition to data storage, a collection of user-friendly web-based interfaces and applications are available to help users effectively explore, visualize and download the thousands of experiments and tens of millions of gene expression patterns stored in GEO. This paper provides a summary of the GEO database structure and user facilities, and describes recent enhancements to database design, performance, submission format options, data query and retrieval utilities. GEO is accessible at http://www.ncbi.nlm.nih.gov/geo/

Journal ArticleDOI
TL;DR: BindingDB is a publicly accessible database currently containing ∼20 000 experimentally determined binding affinities of protein–ligand complexes, for 110 protein targets including isoforms and mutational variants, and ∼11‬000 small molecule ligands.
Abstract: BindingDB (http://www.bindingdb.org) is a publicly accessible database currently containing ∼20 000 experimentally determined binding affinities of protein–ligand complexes, for 110 protein targets including isoforms and mutational variants, and ∼11 000 small molecule ligands. The data are extracted from the scientific literature, data collection focusing on proteins that are drug-targets or candidate drug-targets and for which structural data are present in the Protein Data Bank. The BindingDB website supports a range of query types, including searches by chemical structure, substructure and similarity; protein sequence; ligand and protein names; affinity ranges and molecular weight. Data sets generated by BindingDB queries can be downloaded in the form of annotated SDfiles for further analysis, or used as the basis for virtual screening of a compound database uploaded by the user. The data in BindingDB are linked both to structural data in the PDB via PDB IDs and chemical and sequence searches, and to the literature in PubMed via PubMed IDs.

Journal ArticleDOI
TL;DR: A ‘Phylogenetic Conservation’ analysis tool was implemented that analyses the potential occurrence of orthologous protein complex subunits in mammals and other selected groups of organisms and allows one to predict the occurrence of protein complexes in different phylogenetic groups.
Abstract: Protein complexes are key molecular entities that integrate multiple gene products to perform cellular functions. The CORUM (http://mips.gsf.de/genre/proj/corum/index.html) database is a collection of experimentally verified mammalian protein complexes. Information is manually derived by critical reading of the scientific literature from expert annotators. Information about protein complexes includes protein complex names, subunits, literature references as well as the function of the complexes. For functional annotation, we use the FunCat catalogue that enables to organize the protein complex space into biologically meaningful subsets. The database contains more than 1750 protein complexes that are built from 2400 different genes, thus representing 12% of the protein-coding genes in human. A web-based system is available to query, view and download the data. CORUM provides a comprehensive dataset of protein complexes for discoveries in systems biology, analyses of protein networks and protein complex-associated diseases. Comparable to the MIPS reference dataset of protein complexes from yeast, CORUM intends to serve as a reference for mammalian protein complexes.

Journal ArticleDOI
TL;DR: OligoCalc incorporates three common methods for calculating oligonucleotide-melting temperatures, including a nearest-neighbor thermodynamic model for melting temperature.
Abstract: We developed OligoCalc as a web-accessible, client-based computational engine for reporting DNA and RNA single-stranded and doublestranded properties, including molecular weight, solution concentration, melting temperature, estimated absorbance coefficients, inter-molecular self-complementarity estimation and intramolecular hairpin loop formation. OligoCalc has a familiar ‘calculator’ look and feel, making it readily understandable and usable. OligoCalc incorporates three common methods for calculating oligonucleotide-melting temperatures, including a nearest-neighbor thermodynamic model for melting temperature. Since it first came online in 1997, there have been more than 900 000 accesses of OligoCalc from nearly 200 000 distinct hosts, excluding search engines. OligoCalc is available at http://basic.north western.edu/biotools/OligoCalc.html, with links to the full source code, usage patterns and statistics at that link as well.

Journal ArticleDOI
TL;DR: Quality analysis, including chimera detection, for all available rRNA sequences and the introduction of myRDP Space, a new web component designed to help researchers place their own data in context with the RDP's data are introduced.
Abstract: Substantial new features have been implemented at the Ribosomal Database Project in response to the increased importance of high-throughput rRNA sequence analysis in microbial ecology and related disciplines. The most important changes include quality analysis, including chimera detection, for all available rRNA sequences and the introduction of myRDP Space, a new web component designed to help researchers place their own data in context with the RDP's data. In addition, new video tutorials describe how to use RDP features. Details about RDP data and analytical functions can be found at the RDP-II website (http://rdp.cme.msu.edu/).

Journal ArticleDOI
TL;DR: It is shown that the promoter regions (1 kb upstream of the transcription start site TSS) of genes are significantly enriched in quadruplex motifs relative to the rest of the genome, with >40% of human gene promoters containing one or more quadruplexaterials.
Abstract: Certain G-rich DNA sequences readily form four-stranded structures called G-quadruplexes. These sequence motifs are located in telomeres as a repeated unit, and elsewhere in the genome, where their function is currently unknown. It has been proposed that G-quadruplexes may be directly involved in gene regulation at the level of transcription. In support of this hypothesis, we show that the promoter regions (1 kb upstream of the transcription start site TSS) of genes are significantly enriched in quadruplex motifs relative to the rest of the genome, with >40% of human gene promoters containing one or more quadruplex motif. Furthermore, these promoter quadruplexes strongly associate with nuclease hypersensitive sites identified throughout the genome via biochemical measurement. Regions of the human genome that are both nuclease hypersensitive and within promoters show a remarkable (230-fold) enrichment of quadruplex elements, compared to the rest of the genome. These quadruplex motifs identified in promoter regions also show an interesting structural bias towards more stable forms. These observations support the proposal that promoter G-quadruplexes are directly involved in the regulation of gene expression.

Journal ArticleDOI
TL;DR: Through incorporation of multiple transcript and proteomic expression data sets, the Institute for Genomic Research has been able to annotate 24 799 genes (31 739 gene models), representing ∼50% of the total gene models, as expressed in the rice genome.
Abstract: In The Institute for Genomic Research Rice Genome Annotation project (http://rice.tigr.org), we have continued to update the rice genome sequence with new data and improve the quality of the annotation. In our current release of annotation (Release 4.0; January 12, 2006), we have identified 42,653 non-transposable element-related genes encoding 49,472 gene models as a result of the detection of alternative splicing. We have refined our identification methods for transposable element-related genes resulting in 13,237 genes that are related to transposable elements. Through incorporation of multiple transcript and proteomic expression data sets, we have been able to annotate 24 799 genes (31,739 gene models), representing approximately 50% of the total gene models, as expressed in the rice genome. All structural and functional annotation is viewable through our Rice Genome Browser which currently supports 59 tracks. Enhanced data access is available through web interfaces, FTP downloads and a Data Extractor tool developed in order to support discrete dataset downloads.

Journal ArticleDOI
Jüri Reimand1, Meelis Kull1, Hedi Peterson1, Jaanus Hansen1, Jaak Vilo1 
TL;DR: G:Profiler has a simple, user-friendly web interface with powerful visualisation for capturing Gene Ontology, pathway, or transcription factor binding site enrichments down to individual gene levels.
Abstract: g:Profiler (http://biit.cs.ut.ee/gprofiler/) is a public web server for characterising and manipulating gene lists resulting from mining high-throughput genomic data. g:Profiler has a simple, user-friendly web interface with powerful visualisation for capturing Gene Ontology (GO), pathway, or transcription factor binding site enrichments down to individual gene levels. Besides standard multiple testing corrections, a new improved method for estimating the true effect of multiple testing over complex structures like GO has been introduced. Interpreting ranked gene lists is supported from the same interface with very efficient algorithms. Such ordered lists may arise when studying the most significantly affected genes from high-throughput data or genes co-expressed with the query gene. Other important aspects of practical data analysis are supported by modules tightly integrated with g:Profiler. These are: g:Convert for converting between different database identifiers; g:Orth for finding orthologous genes from other species; and g:Sorter for searching a large body of public gene expression data for co-expression. g:Profiler supports 31 different species, and underlying data is updated regularly from sources like the Ensembl database. Bioinformatics communities wishing to integrate with g:Profiler can use alternative simple textual outputs.

Journal ArticleDOI
TL;DR: The Genome Browser displays a wide variety of annotations at all scales from the single nucleotide level up to a full chromosome and includes assembly data, genes and gene predictions, mRNA and EST alignments, and comparative genomics, regulation, expression and variation data.
Abstract: The University of California, Santa Cruz Genome Browser Database contains, as of September 2006, sequence and annotation data for the genomes of 13 vertebrate and 19 invertebrate species. The Genome Browser displays a wide variety of annotations at all scales from the single nucleotide level up to a full chromosome and includes assembly data, genes and gene predictions, mRNA and EST alignments, and comparative genomics, regulation, expression and variation data. The database is optimized for fast interactive performance with web tools that provide powerful visualization and querying capabilities for mining the data. In the past year, 22 new assemblies and several new sets of human variation annotation have been released. New features include VisiGene, a fully integrated in situ hybridization image browser; phyloGif, for drawing evolutionary tree diagrams; a redesigned Custom Track feature; an expanded SNP annotation track; and many new display options. The Genome Browser, other tools, downloadable data files and links to documentation and other information can be found at http://genome.ucsc.edu/.

Journal ArticleDOI
TL;DR: The Genomes On Line Database (GOLD) as mentioned in this paper is a comprehensive resource for centralized monitoring of genome and metagenome projects worldwide, containing information for more than 5800 sequencing projects.
Abstract: The Genomes On Line Database (GOLD) is a comprehensive resource for centralized monitoring of genome and metagenome projects worldwide. Both complete and ongoing projects, along with their associated metadata, can be accessed in GOLD through precomputed tables and a search page. As of September 2009, GOLD contains information for more than 5800 sequencing projects, of which 1100 have been completed and their sequence data deposited in a public repository. GOLD continues to expand, moving toward the goal of providing the most comprehensive repository of metadata information related to the projects and their organisms/environments in accordance with the Minimum Information about a (Meta)Genome Sequence (MIGS/MIMS) specification. GOLD is available at: http://www.genomesonline.org and has a mirror site at the Institute of Molecular Biology and Biotechnology, Crete, Greece, at: http://gold.imbb.forth.gr/

Journal ArticleDOI
TL;DR: The worldwide Protein Data Bank (wwPDB) is the international collaboration that manages the deposition, processing and distribution of the PDB archive, a repository for the coordinates and related information for more than 38 000 structures, including proteins, nucleic acids and large macromolecular complexes that have been determined using X-ray crystallography, NMR and electron microscopy techniques.
Abstract: The worldwide Protein Data Bank (wwPDB) is the international collaboration that manages the deposition, processing and distribution of the PDB archive. The online PDB archive is a repository for the coordinates and related information for more than 38 000 structures, including proteins, nucleic acids and large macromolecular complexes that have been determined using X-ray crystallography, NMR and electron microscopy techniques. The founding members of the wwPDB are RCSB PDB (USA), MSD-EBI (Europe) and PDBj (Japan) [H.M. Berman, K. Henrick and H. Nakamura (2003) Nature Struct. Biol., 10, 980]. The BMRB group (USA) joined the wwPDB in 2006. The mission of the wwPDB is to maintain a single archive of macromolecular structural data that are freely and publicly available to the global community. Additionally, the wwPDB provides a variety of services to a broad community of users. The wwPDB website at http://www.wwpdb.org/ provides information about services provided by the individual member organizations and about projects undertaken by the wwPDB.

Journal ArticleDOI
TL;DR: MINT, a database designed to store data on functional interactions between proteins, consists of entries extracted from the scientific literature by expert curators assisted by 'MINT Assistant', a software that targets abstracts containing interaction information and presents them to the curator in a user-friendly format.
Abstract: The Molecular INTeraction database (MINT, http://mint.bio.uniroma2.it/mint/) aims at storing, in a structured format, information about molecular interactions (MIs) by extracting experimental details from work published in peer-reviewed journals. At present the MINT team focuses the curation work on physical interactions between proteins. Genetic or computationally inferred interactions are not included in the database. Over the past four years MINT has undergone extensive revision. The new version of MINT is based on a completely remodeled database structure, which offers more efficient data exploration and analysis, and is characterized by entries with a richer annotation. Over the past few years the number of curated physical interactions has soared to over 95 000. The whole dataset can be freely accessed online in both interactive and batch modes through web-based interfaces and an FTP server. MINT now includes, as an integrated addition, HomoMINT, a database of interactions between human proteins inferred from experiments with ortholog proteins in model organisms (http://mint.bio.uniroma2.it/mint/).