scispace - formally typeset
Open AccessJournal ArticleDOI

Palynology and micropalaeontology of the Pliocene - Pleistocene transition in outcrop from the western Caspian Sea, Azerbaijan: Potential links with the Mediterranean, Black Sea and the Arctic Ocean?

TLDR
In this article, a long outcrop section in the Jeirankechmez river valley, Azerbaijan, near the western coast of the Caspian Sea has been studied, including the upper part of the Pliocene Productive Series and overlying Plio-Pleistocene Akchagylian and Apsheronian regional stages.
About
This article is published in Palaeogeography, Palaeoclimatology, Palaeoecology.The article was published on 2018-12-15 and is currently open access. It has received 33 citations till now. The article focuses on the topics: Dinocyst & Foraminifera.

read more

Content maybe subject to copyright    Report

Page1of31
PalynologyandmicropalaeontologyofthePliocene‐Pleistocenetransitioninoutcropfromthe
westernCaspianSea,Azerbaijan:potentiallinkswiththeMediterranean,BlackSeaandtheArctic
Ocean?
By:KeithRichards
a,b,*
,ChristiaanG.C.vanBaak
c,d
,JohnAthersuch
e
,ThomasM.Hoyle
c,f
,Marius
Stoica
g,c
,WilliamE.N.Austin
h
,AlixG.Cage
i
,AntoineA.H.Wonders
e
,FabienneMarret
j
,CarmelA.
Pinnington
j
a
KrAStratigraphicLtd.,UnitedKingdom;
b
InstituteforBiodiversityandEcosystemDynamics(IBED),
UniversityofAmsterdam,TheNetherlands;
c
PaleomagneticLaboratory‘FortHoofddijk’,Utrecht
University,TheNetherlands;
d
nowat:CASP,Cambridge,UnitedKingdom;
e
StrataDataLtd.,United
Kingdom;
f
MarinePalynologyandPaleoceanography,UtrechtUniversity,TheNetherlands;
g
DepartmentofGeology,UniversityofBucharest;
h
SchoolofGeographyandGeosciences,University
ofStAndrews,UnitedKingdom;
i
SchoolofGeography,GeologyandtheEnvironment,Keele
University,UnitedKingdom;
j
SchoolofEnvironmentalSciences,UniversityofLiverpool,United
Kingdom.
*Correspondingauthorat:KrAStratigraphicLtd.,116AlbertDrive,Deganwy,Conwy,LL319YY,
UnitedKingdom.
Emailaddress:kr@paly.co.uk(K.Richards)
Abstract
Newpalynological,ostracodandforaminiferaldataarepresentedfromalongoutcropsectioninthe
Jeirankechmezrivervalley,Azerbaijan,nearthewesterncoastoftheCaspianSea.Theinterval
studiedincludestheupperpartofthePlioceneProductiveSeriesandoverlyingPlio‐Pleistocene
Akchagylian(Akchagyl)andApsheronian(Apsheron)regionalstages.ProductiveSeriessediments
weredepositedinaclosedfluvio‐lacustrinebasin,isolatedfromanymarineinfluence.Theonsetof
Akchagyldepositionismarkedbyalithologicalchangeassociatedwithasignificantfloodingevent
that,atitsmaximumextent,reachedtheSeaofAzovandintopresent‐dayIran,Kazakhstan,
TurkmenistanandRussia.AttheJeirankechmezlocality,thelowermostbedsoftheAkchagylcontain
predominantlyfreshwaterassemblageswithveryminimalmarineorbrackishcontentshowingthat
theonsetofAkchagyldepositionwasnotamarineinducedevent.ReworkedMesozoic
palynomorphsoccurfrequentlyinthislowermostinterval,includingthereworkedpollentaxa
AquilapollenitesTriprojectusthatwereerodedfromthenorthornorth‐east.
Significantmarineinfluenceisevidentca.30mabovethebaseoftheAkchagylinthestudied
outcrop,markedbythe‘CassidulinaBeds’whichcontainadistinctbutlowdiversityassemblageof
foraminiferathatoccurswidelyandcanbecorrelatedinmanypartsofthegreaterCaspianregion.
Dinoflagellatecysts(dinocysts)inthemarineintervalincludefrequentspecimensverysimilarto
Algidasphaeridiumcapillatum(MatsuokaandBujak),aspeciesonlypreviouslyrecordedfromthe
northernBeringSea.Thecombinedevidencefromthesedinocystsandforaminiferasuggeststhata
marine(i.e.seaway)connectionexistedbrieflybetweentheArcticOceanandtheCaspianSeaatthe
veryendofthePliocene.
Re‐examinationofcorematerialfromtheAdriaticSeashowsthatCassidulinareniforme
(Nørvang)waspresentintheMediterraneanduringandshortlyaftertheLastGlacialMaximum.The
possibilitythattheendPliocenemarineincursioncamefromtheMediterraneanviatheBlackSea
regiontotheCaspianSeacannotbeentirelyruledoutbutisconsideredunlikely.Biometricanalyses
areappliedtoobtainabetterunderstandingofthepalaeoenvironmentalsignificanceofthe
assemblagesdominatedbycassidulinids.
Anintervalmorethan300mthickisassignedtotheApsheronregionalstageonthebasisof
predominantlybrackishostracodanddinocystassociations.Thedinocystsareof‘Peri‐Paratethyan’
affinityandcloselyresemblespeciesfirstdescribedfromMioceneandPliocenesedimentsinthe

Page2of31
PannonianandDacicbasinsofEasternEurope.Manysimilaritiesexistinthemicroplanktonrecords
(dinocystsandacritarchs)betweentheCaspianSea,theBlackSeaandCentralParatethys.
Keywords
Akchagyl;Apsheron;Dinoflagellatecysts;Pollen;Ostracods;Foraminifera
1. Introduction
TheCaspianSeaisthelargestlakeintheworldbyvolumeandsurfacearea(Dumont,1998).Itisina
constantstateofflux,withfluctuationsinwaterlevelintheorderof100sofmetersoccurring
throughoutthePleistocene(Svitoch,2014;Yanina,2013).Becauseoftherelativelyflattopographyin
thenorthernCaspianregion,waterlevelhighstandsareassociatedwithenormousexpansionsofthe
sea‐surfacearea.Thelargestsea‐surfaceareaoftheCaspianSeainthePlio‐Pleistocenewasachieved
duringtheAkchagylregionalstage(MolostovskyandGuzhikov,1999;Nevesskayaetal.,2003),
beginningaroundthreemillionyearsagointhelatestPlioceneandcontinuingintotheearly
Pleistocene.Thistransgressionwasparticularlysignificantinthatitoccurredfollowingaperiod,
lastingmorethantwomillionyears,whentheCaspianBasinwasisolatedfromtheworld’soceans
andnon‐marine,fluvio‐lacustrinedepositionoftheProductiveSeriesoccurred,predominantlyinthe
deeperSouthCaspianBasin(Reynoldsetal.,1998;Hindsetal.,2004;Forteetal.,2015).Later
expansionsduringtheApsheronandyoungerPleistoceneregionalstagesneverstretchedasfar
inlandasduringthemaximumAkchagyltransgression(Svitoch,2014).
Akchagylsedimentsaregenerallydescribedasmarineandinmostaccounts(e.g.Jonesand
Simmons,1996;Svitoch,2014)arepresumedtohaveoriginatedfollowingariseinglobalsealevels
duringthelatePliocenethatraisedtheleveloftheMediterraneanSea,thatsubsequentlyflooded
theBlackSeaandthenover‐spilledintotheCaspianSeatothenorthoftheCaucasus.Anopposite
viewisheldbyZubakov(e.g.1992)whoconsidersthatCaspiantransgressions,includingthe
Akchagylian,resultfromincreasedriverrunoff,particularlyfromtheVolga,withsubsequentover‐
spillfromtheCaspianSeatoadjacentbasins,includingtheBlackSea.Irrespectiveoftheoriginofthe
initialriseinCaspianwaters,thereisundoubtedlysomedirectmarineinfluenceintheLowerto
MiddleAkchagyl,andthisismostevidentintheso‐called‘CassidulinaBeds’thathavebeen
documentedinpreviousbiostratigraphicstudiesfromAzerbaijanandelsewhere.Thesebedsare
described(e.g.Agalarovaetal.,1940;Mandelstametal.,1962;Yassini,1986;JonesandSimmons,
1996)ascontaininganinfluxofcalcareousbenthonicforaminifera,mostoftenincludingspeciesof
CassidulinaandCibicides,includingC.lobatulus(WalkerandJacob).Previouspalynologicalstudiesof
thelatePliocenetoearly/middlePleistoceneoftheCaspianSearegion(e.g.Filippova,1997;
Naidina,1999;Yakhimovichetal.,2000;NaidinaandRichards,
2016)areessentiallypollenandspore
based.These,therefore,givelimitedinterpretationsinthatinferredenvironmentalorclimatic
changesarebasedonlyonterrestrialvegetation.
ThesedimentsoverlyingtheAkchagylaremostoftenreferredtoastheApsheronregional
stageandthesearewidelydepositedacrossAzerbaijan(AliyevaandKengerli,2014)andthewider
Caspianregion(Abdullayevetal.,2012).DepositionoftheApsheronoccurredduringtheearly
PleistoceneinaclosedbrackishwaterbasinresemblingthemodernCaspianSeaaccordingtoSvitoch
(2014).HerewestudytheAkchagylandApsheronfossilfaunas(ostracodsandforaminifera)and
floras(dinoflagellatecysts,pollenandotherpalynomorphs)inalongandcontinuouslyexposed
outcroprecordintheJeirankechmezRiverValley,GobustanregionofAzerbaijan(Fig.1).Theaimof
thestudyistodocumentthefaunalandfloralchangesthatoccurredinresponsetovariationsin
palaeoenvironmentalconditionsassociatedwiththeAkchagyltransgressionoftheCaspianSeaand
subsequentApsherondeposition.TheseeventsoccurredduringthelatestPliocenetoearly
Pleistocene,atthetimeoftheonsetofnorthernhemisphereglaciations.Biostratigraphicmethods
areusedtodifferentiatetheAkchagylandApsheronintervalsduetothelackofmolluscfaunaand
absenceofaclearlydefinedlithologicalboundary.Comparisonsofmicrofaunaldataaremadewith

Page3of31
publishedrecordsfromtheArcticOceanandwithnewlyobtainedforaminiferaldatafromacoreof
latePleistoceneagefromtheAdriaticSea.

2. Regionalstagenomenclatureandpreviousmicropalaeontologicalstudies
AlongresearchhistoryofmicropalaeontologicalandstratigraphicstudiesoftheAkchagyland
Apsheronstagesexists,datingbacktothe19
th
century.Thename‘Akchagyl’isderivedfromthe
nameofalocalityinthecoastalregionofTurkmenistan(JonesandSimmons,1996).Sediments
attributedtotheAkchagylregionalstageinAzerbaijanwerefirstdescribedbyAndrusov(1902)and
sincethenhavebeenthesubjectofmuchstudyanddebate(seeJonesandSimmons,1996;Alizadeh
etal.,2016forfurtherdetails).AkchagylsedimentsarewidespreadthroughoutmostoftheCaspian
regionandextendbeyondthepresent‐dayCaspianSeaareaeastwardsintoKazakhstanand
Turkmenistan(Alizadeh,1961;Danukalova,1996;Trubikhin,1977),westwardsintoAzerbaijanand
Georgia(Agalarovaetal.,1961;Shatilovaetal.,2009),tothenorthintoRussia(Yakhimovichetal.,
2000;Svitoch,2014)andtothesouthintoIran(Yassini,1986).Notsurprisingly,thefaunalcontent
variessignificantlyacrosstheregion,leadingtoproblemsincorrelationofmicrofaunalassemblages
andchronostratigraphiccalibrations.Additionalcomplicationshavearisenbyusingtheoriginal
biostratigraphicallydefinedAkchagylstageasalithostratigraphicunit.Assuch,alargenumberof
differentdefinitionsofboundariesandsub‐divisionshavebeenproposedovertime.Itisclearfrom
theoverlappingandvariablenatureoftheseassemblagesthatthetruerelationshiprelativeto
lithostratigraphicunits,andalsotime,remainsopentoquestion.AccordingtotheRussian
chronostratigraphicschemes,Akchagylsedimentsarenotolderthanca.3.60Maandnotyounger
thanca.1.80Ma(Trubikhin,1977)andthereforefallwithinthelatePliocene(Piacenzian)toearly
Pleistocene(Gelasian)andtheGaussandMatuyamamagneticchrons(seeAlizadehetal.,2016;Van
Baaketal.,2013forfurtherdetails).
Akchagylsedimentstypicallycomprisegrey,dark‐greyandgrey‐bluesandyclays,andfineto
medium‐grainedsands,sandstonesandshellbeds(Alizadehetal.,2016).Interbedsofvolcanicash
andbrecciaalsooccur.AccordingtoAliyevaandKengerli(2014),themud‐proneLowerAkchagyl
typicallycontainsfreshwaterostracods,withCyprideistorosa(Jones),abrackishform,predominant
inthemore‐sandyMiddleAkchagyl.TheUpperAkchagylcharacteristicallycomprisesalternatinggrey
andbrownsandyshaleswithinterbedsofsandstoneandvolcanicash,andcontainsmainlybrackish
waterostracods.ThelowerboundaryoftheAkchagylisdefinedbytheappearanceof‘poormarine
fauna’(Danukalova,1996;Molostovsky,1997;Alizadehetal.,2016)whichincludestheforaminifera
CibicidesandCassidulina,andmolluscsAvimactrasubcaspia(Andrussov),Cardium(Cerastoderma)
dombra(Andrussov),Cerastodermaglaucum(Bruguière)andPotamides(Pirenella).Detailed
descriptionsofthemolluscfaunasarepresentedbyNevesskayaetal.(1987,2001)amongothers.
Athree‐foldsub‐divisionfortheAkchagylinthenorthernCaspianregionisoftenused(e.g.
NaidinaandRichards,2016)butisnotaccuratelytime‐constrained.Typicalmicrofaunalassociations
aredescribedbySvitoch(2014),referringtoearlierworkbyKarmishina(1964)andothers.Following
theschemeofSvitoch(2014),thelowermostAkchagyl(Ak
1
)containsforaminiferasuchasBolivina,
CassidulinaandElphidiumaswellastheostracodgeneraLeptocythere,Loxoconcha,Limnocythere
andCandona.TheMiddleAkchagyl(Ak
2
)containstherichestmicrofaunalassemblageswith
increasednumbersofforaminiferaandostracodsobserved.Marinefaunabecomediminishedonce
againintheUpperAkchagyl(Ak
3
)whereostracodspredominate,includingCyprideislittoralis(Brady)
(=C.torosaaccordingtoKempf,2017),Limnocytherepliocenica(Suzin),L.tenuireticulata(Suzin)and
Eucytherenaphtatscholana(Livental),interpretedasaresponsetoreducedsalinity.Svitoch(2014)
assignsthePlio‐Pleistocene(2.58MaGauss‐Matuyama)boundarywithintheMiddleAkchagyl(Ak
2
).
InthecentralandsouthernregionsoftheCaspianregion,Rozyeva(1966),referringto
Alizadeh(1961),alsoindicatedthatathree‐foldsub‐divisionoftheAkchagylFormationwaspossible
onthebasisofostracodsinTurkmenistan.NumerousspeciesofCandonaandLimnocytherewere
recordedfromthelowersub‐division.Inaddition,theforaminiferaCassidulinaandCibicides
lobatuluswererecorded.TheseforaminiferawerefirstrecordedintheLowerAkchagylbyAgalarova

Page4of31
etal.(1940)andhavesubsequentlybeenfoundinmanylocalitiesinthegreaterCaspianregion(e.g.
Yassini,1986;Alizadehetal.,2016).Rozyeva(1966)describesthemiddlesub‐divisionoftheAkchagyl
inTurkmenistanasbeingthinandpoorlyfossiliferous,andtheuppersub‐divisionasbeing
characterisedbynumerousspeciesrecordedasLeptocythere(whichdonotoccurbelow)andby
Loxoconchaeichwaldii(Livental),Cytherissa(=Eucythere)naphtatscholanaaswellasundifferentiated
speciesofLimnocythereandCandona.ForAzerbaijan,Mandelstametal.(1962)presentedasimilar
sub‐divisionbasedonostracods.Theseauthorsformalisedthesub‐divisionsintoalowerEucypris
puriformiszone,amiddleunnamedintervalandanupperLeptocytherezone.Itisalsointerestingto
notethatacomparableLoxoconchaLeptocythereCytherissaLimnocythereassemblageisdescribed
bySvitoch(2014)butattributedtotheApsheronratherthanAkchagyl.TheApsheronregionalstage
istypicallyrecognisedbiostratigraphicallybytheincomingofa‘Ponto‐Caspian’endemicmollusc
fauna,whichincludesthegeneraApsheronia,Dreissena,Hyrcania,Monodacna,Paraapsheroniaand
Pseudocatillus,amongothers(Molostovsky,2007;Svitoch,2014).
3.Sectiondescription
Thedatausedinthisstudyarederivedfromacontinuousoutcropofca.1600minthicknessexposed
alongtheJeirankechmezRiver,intheGobustanregionofAzerbaijan,around50kmtothesouth‐
westofBaku.Thebaseofthesectionislocatedatgridpoint40.237771°N,49.365299°E.The
lowermostpartofthestudiedsectionconsistsofmorethan750moffluvio‐deltaicsandstonesand
brown,siltyclaysofthePlioceneProductiveSeries.Thisisoverlainbyanintervalofmorethan800m
oflight‐greyandyellow‐brownmarlsthat,basedonfieldcharacteristics,areattributedtothe
AkchagylandApsheronregionalstages.Thereis,however,noobviousstratigraphicbreakvisible
withintheoutcropthatcanbeusedtoassigntheAkchagyl‐Apsheronboundary.Organic‐rich
(sapropel)layersofupto1mthickoccuratthreelevels;897m,940mand990m(Fig.2).Initialfield
observationsindicatedthatthestudyoutcropcontainedveryfewfossilmolluscs.Palynologyand
micropalaeontologywerethereforechosenasthepreferredmethodsofbiostratigraphicstudy.
4.Materialsandmethods
Sixtyfoursampleswereanalyzedformicrofossils(primarilyostracodsandforaminifera)and
palynologyfromtheAkchagyl(includingtheboundarywiththeunderlyingProductiveSeries)and
presumedApsheronintervalsoftheoutcropsectionatJeirankechmez.Samplesdescribedinthis
studyarefromanintervalaround375mthick.Averagespacingofsamplesovertheentireintervalis
approximatelyonesamplepersixmetres.Ingeneral,studiedsamplesaremorecloselyspacedinthe
lower(Akchagyl)intervalandmorewidelyspacedintheupper(Apsheron)interval.Afterinitial
resultswereobtained,additionalinfillsampleswereanalysedoverspecificintervalsofinterest.
Samplesreferredtointhetextareindicatedbytheirrelativestratigraphicposition(i.e.elevationin
metres)withintheoutcrop,followedbythesamplereference(e.g.1140.98m,JE146).Anadditional
sampleLOK2wasstudiedfromtheLokbatanlocality,situatedca.20kmtothenorth‐east,nearBaku,
ontheApsheronpeninsula.Foraminiferalresultsarecomparedwithpreviouslyunpublisheddata
fromgravitycoreJM10‐03‐GC,takenatWijdefjorden,northernSvalbardandfromcoreIN68‐21
collectedintheAdriaticSea.
Formicrofossils,eachsamplewaswashed througha125µmsieveandtheresiduedriedat
100°Cwithquantitativecountsthenmadeofeachspecies.Identificationsandenvironmental
interpretationsforostracodsarebasedonnumeroussourcesincludingAgalarovaetal.(1961),
Athersuchetal.(1989),Boomeretal.(2005,2010),Mandelstametal.(1962),Meisch(2000),Van
Baaketal.(2013),Stoicaetal.(2016)andDaniel(2013).
SamplesforpalynologywereprocessedwithoutoxidationusingcoldHCl(20%)andcoldHF
(40%)withresiduessievedusing10µmmeshsievecloth.Countsweremadeofallpalynomorphsi.e.
pollengrains,spores,algae,non‐pollenpalynomorphs(NPP)anddinocysts,includingreworkedtaxa.A
minimumsumof200palynomorphswasobtainedinmostcases,exceptwherepalynomorphrecovery
wasmuchreducedinsandyorotherwiseless‐fossiliferouslithologies.Pollenidentificationswere

Page5of31
madeprimarilywithreferencetonorth‐westEuropeanandRussianpollenfloras(e.g.Bobrovetal.,
1983;KuprianovaandAlyoshina,1972,1978).DinocystsandNPPwereidentifiedfromnumerous
sourcesincludingBakračetal.(2012),Baltes(1971),Evittetal.(1985),Marretetal.(2004),Mudieet
al.(2011),Mudieetal.(2017,2018),Richardsetal.(2014,2017),SolimanandRiding(2017),Sütő‐
Szentai(1982,2010,2011)andWalletal.(1973).
Biostratigraphiczonationsare,inmostinstances,supportedbyCONISSclusteranalysis
(Grimm,1987)usingStrataBugs®v.2.1.Duetoproblemsinherentfromsomesamplesbeingbarrenof
microfaunaorcontainingveryimpoverishedassemblages,zonesareassignedbyacombinationof
observeddistributionsandreferencetotheirassignedclusters.TheCONISSclusteranalyseswere
carriedoutontheentiremicropalaeontological(i.e.ostracodsandforaminiferacombined)and
palynologicaldatasets.Clusteringwasstratigraphicallyconstrainedinordertodetermine,asfaras
possible,eventsofbiostratigraphicvalue.Barrenorverypoorlyfossiliferoussamplesareexcluded
fromtheclusteranalysisofmicrofaunaldataandfromzoneassignments.
FortheSEMpalynologicalpreparations,approximately0.5mlofresiduewasmixedwith
distilledwaterinaplasticPetridish.Specimenswereisolatedwithaglassmicropipetteusingan
invertedmicroscopeandwashedindistilledwater.Cleanspecimenswerethenmountedona
Cambridgealuminiumstubandsputtercoatedwithgold/palladium(PolaronE5100).Specimensof
ostracodsandforaminiferaselectedforSEMpreparationswerehand‐pickedfromdriedprocessed
residues.
5.Micropalaeontologyresults
Sixdistinctintervalscanberecognisedinthestudiedsectionbasedonmicrofauna(ostracodsand
foraminifera)(Fig.3).TheseareassignedasZonesJM(JM=JeirankechmezMicrofauna)1to6,which
coincidewithCONISSclustersinalmostallcases.SamplesstudiedfromtheProductiveSeries
(assignedasZoneJM‐1)weremostlypoorlyfossiliferousandoflittleinterpretivevalue,exceptfor
thepresenceofasinglespecimenoftheostracodCyprideistorosaandasparse,reworked
foraminiferalassemblage.ZonesJM2to6occurwithintheAkchagyltoApsheronintervalsandare
describedbelow.Adistributionchartshowingallmicrofaunarecordedareprovidedas
supplementaryinformation.RepresentativeSEMphotomicrographsofmicrofaunaareshownin
Figure4(foraminifera)andFigures5,6,and7(ostracods).Theillustrationsofostracodsareof
specimensfromaduplicatesetofsamplesandthereforecontainsomespecieswhichwerenot
identifiedintheprincipalsectionanalysed.NannofossilanalysisofsampleJE039(797.88m)yielded
anentirelyreworkednannoplanktonassemblagelackinginaclearbiostratigraphicsignal(Table1).
5.1.ZoneJM‐2:770.58m(JE028)–789.83m(JE036)
OstracodassemblagesarecharacterisedbythepresenceofLimnocythere,includingL.alveolata
(Suzin)andL.luculenta(Livental).AfewjuvenilespecimensofEucytherenaphtatscholanawere
recoveredfromonesampleonly(774.48m,JE030).Otherwise,theassemblagescontain
undifferentiatedspeciesofLoxoconcha,candonidsandvarioussmoothostracods.Rarecalcareous
benthonicforaminiferawererecordedincludingAmmonia(774.48m,JE030;789.83m,JE036),
ElphidiumandSpirillina(bothat789.83m,JE036).Fiveofthestudiedsamplescontainedno
microfauna.
5.2.ZoneJM‐3
5.2.1.Sub‐zoneJM‐3A:797.88m(JE039)–813.18m(JE045)
Limnocythere,includingthesupposedlyAkchagylrestrictedL.tschaplyginae(Suzin)andLoxoconcha
(includingrareL.eichwaldii)arepresentatthebaseoftheinterval.Undifferentiatedsmooth
ostracodsandfragmentsofvalvesalsooccur.Themainfeatureofthisintervalisthesignificantly
increasedpresenceofbenthicforaminiferaparticularlyspeciesofCassidulinainassociationwith
Cibicides(includingseveralmorphotypes/sub‐species)andHanzawaia.Thisassemblageispresentin
mostsamplesstudiedbetween797.88m(JE039)and813.18m(JE045).Otherbenthicforaminifera

Citations
More filters
Journal Article

Quaternary time scales for the Pontocaspian domain: Interbasinal connectivity and faunal evolution

TL;DR: The authors reviewed and updated the late Pliocene to Quaternary stratigraphic framework of the Pontocaspian domain, focusing on the Black Sea Basin, Caspian Basin, Marmara Sea and the terrestrial environments surrounding these large, mostly endorheic lake-sea systems.
Journal ArticleDOI

Flooding of the Caspian Sea at the intensification of Northern Hemisphere Glaciations

TL;DR: A magnetostratigraphic age model supported by 40 Ar/39 Ar dating of volcanic ash layers for the 1600 m thick Jeirankechmez section in Azerbaijan that comprises a sedimentary rock succession covering this so-called Akchagylian flooding was presented in this paper.
Journal ArticleDOI

From bi-polar to regional distribution of modern dinoflagellate cysts, an overview of their biogeography

TL;DR: In this article, the authors examined the distribution of 91 modern dinoflagellate cyst taxa from 3636 locations across the world's oceans and highlighted the progress made since the early 1970s on understanding of these important tracers of environmental conditions but also gaps in our knowledge of their distribution in pelagic regions of the Pacific and Indian Oceans as well as under Arctic sea ice.
Book ChapterDOI

Past and Current Changes in the Largest Lake of the World: The Caspian Sea

TL;DR: The Caspian Sea (CS) is the largest lake in the world and is composed of a very shallow north sub-basin with a very low salinity mostly below 5 psu as discussed by the authors.
References
More filters
Journal ArticleDOI

CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares

TL;DR: ConISS is a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares, which has been used widely for unconstrained analyses and has proved particularly satisfactory for pollen frequency data.
Journal ArticleDOI

Sea level and global ice volumes from the Last Glacial Maximum to the Holocene.

TL;DR: From ∼1,000 observations of sea level, allowing for isostatic and tectonic contributions, this work quantified the rise and fall in global ocean and ice volumes for the past 35,000 years and provides new constraints on the fluctuation of ice volume in this interval.

World Register of Marine Species

TL;DR: WoRMS has an editorial management system where each taxonomic group is represented by an expert who has the authority over the content, and is responsible for controlling the quality of the information.
Related Papers (5)
Frequently Asked Questions (1)
Q1. What are the contributions in this paper?

The interval studied includes the upper part of the Pliocene Productive Series and overlying Plio‐Pleistocene Akchagylian ( Akchagyl ) and Apsheronian ( Apsheron ) regional stages. Reworked Mesozoic palynomorphs occur frequently in this lowermost interval, including the reworked pollen taxa Aquilapollenites‐Triprojectus that were eroded from the north or north‐east. Significant marine influence is evident ca. 30 m above the base of the Akchagyl in the studied outcrop, marked by the ‘ Cassidulina Beds ’ which contain a distinct but low diversity assemblage of foraminifera that occurs widely and can be correlated in many parts of the greater Caspian region. The combined evidence from these dinocysts and foraminifera suggests that a marine ( i. e. seaway ) connection existed briefly between the Arctic Ocean and the Caspian Sea at the very end of the Pliocene.