scispace - formally typeset
Journal ArticleDOI

Perovskite solar cells: from materials to devices.

Hyun Suk Jung, +1 more
- 01 Jan 2015 - 
- Vol. 11, Iss: 1, pp 10-25
TLDR
In this review, basic fundamentals of perovskite materials including opto-electronic and dielectric properties are described to give a better understanding and insight into high-performing perovkite solar cells.
Abstract
Perovskite solar cells based on organometal halide light absorbers have been considered a promising photovoltaic technology due to their superb power conversion efficiency (PCE) along with very low material costs. Since the first report on a long-term durable solid-state perovskite solar cell with a PCE of 9.7% in 2012, a PCE as high as 19.3% was demonstrated in 2014, and a certified PCE of 17.9% was shown in 2014. Such a high photovoltaic performance is attributed to optically high absorption characteristics and balanced charge transport properties with long diffusion lengths. Nevertheless, there are lots of puzzles to unravel the basis for such high photovoltaic performances. The working principle of perovskite solar cells has not been well established by far, which is the most important thing for understanding perovksite solar cells. In this review, basic fundamentals of perovskite materials including opto-electronic and dielectric properties are described to give a better understanding and insight into high-performing perovskite solar cells. In addition, various fabrication techniques and device structures are described toward the further improvement of perovskite solar cells.

read more

Citations
More filters
Journal ArticleDOI

Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites

TL;DR: In this article, the exciton binding energy of perovskite solar cells was measured and it was shown that the impressive performance of solar cells arises from the spontaneous generation of free electrons and holes after light absorption.
Journal ArticleDOI

2D Homologous Perovskites as Light-Absorbing Materials for Solar Cell Applications

TL;DR: The homologous 2D halide perovskites define a promising class of stable and efficient light-absorbing materials for solid-state photovoltaics and other applications.
Journal ArticleDOI

Ruddlesden-Popper Hybrid Lead Iodide Perovskite 2D Homologous Semiconductors

TL;DR: In this paper, a large scale synthesis, crystal structure, and optical characterization of the 2D (CH3(CH2)3NH3)n−1PbnI3n+1 (n = 1, 2, 3, 4, ∞) perovskites is presented.
Journal ArticleDOI

Formamidinium and Cesium Hybridization for Photo- and Moisture-Stable Perovskite Solar Cell

TL;DR: In this article, a perovskite light absorber incorporating organic-inorganic hybrid cation in the A-site of 3D APbI3 structure with enhanced photo- and moisture stability is reported.
Journal ArticleDOI

Two-Dimensional Hybrid Halide Perovskites: Principles and Promises.

TL;DR: This Perspective begins with a historical flashback to early reports before the "perovskite fever", and follows this original work to its fruition in the present day, where 2D halide perovskites are in the spotlight of current research, offering characteristics desirable in high-performance optoelectronics.
References
More filters
Journal ArticleDOI

Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells

TL;DR: Two organolead halide perovskite nanocrystals were found to efficiently sensitize TiO(2) for visible-light conversion in photoelectrochemical cells, which exhibit strong band-gap absorptions as semiconductors.
Journal ArticleDOI

Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites

TL;DR: A low-cost, solution-processable solar cell, based on a highly crystalline perovskite absorber with intense visible to near-infrared absorptivity, that has a power conversion efficiency of 10.9% in a single-junction device under simulated full sunlight is reported.
Journal ArticleDOI

Dye-Sensitized Solar Cells

TL;DR: Dye-sensitized solar cells (DSCs) offer the possibilities to design solar cells with a large flexibility in shape, color, and transparency as mentioned in this paper, and many DSC research groups have been established around the world.
Journal ArticleDOI

Sequential deposition as a route to high-performance perovskite-sensitized solar cells

TL;DR: A sequential deposition method for the formation of the perovskite pigment within the porous metal oxide film that greatly increases the reproducibility of their performance and allows the fabrication of solid-state mesoscopic solar cells with unprecedented power conversion efficiencies and high stability.
Journal ArticleDOI

Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber.

TL;DR: In this article, transient absorption and photoluminescence-quenching measurements were performed to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide and triiodide perovskite absorbers.
Related Papers (5)