scispace - formally typeset
Open AccessJournal ArticleDOI

Photosynthetic acclimation to long‐term exposure to elevated CO2 concentration in Pinus radiata D. Don. is related to age of needles

TLDR
Modelling of the effects of CO2 enrichment on photosynthesis and ribulose-1,5-bisphosphate carboxylase/ oxygenase (Rubisco) in current and 1-year-old needles on the same branch shows that enhancement of photosynthesis continues to occur in needles after 4 years’ exposure to elevated CO2 concentrations.
Abstract
The effects of CO2 enrichment on photosynthesis and ribulose-1,5-bisphosphate carboxylase/ oxygenase (Rubisco) in current year and 1-year-old needles on the same branch were studied on Pinus radiata D. Don. trees growing for 4 years in large, open-top chambers at ambient (36 Pa) and elevated (65 Pa) CO2 partial pressures. At this age trees were 3·5–4 m tall. Measurements made late in the growing cycle (March) showed that photosynthetic rates at the growth CO2 concentration [(pCO2)a] were lower in 1-year-old needles of trees grown at elevated CO2 concentrations than in those of trees grown at ambient (pCO2)a. At elevated CO2 concentrations Vcmax (maximum carboxylation rate) was reduced by 13% and Jmax (RuBP regeneration capacity mediated by maximum electron transport rate) by 17%. This corresponded with photosynthetic rates at the growth (pCO2)a of 4·68 ± 0·41 μmol m–2 s–1 and 6·15 ± 0·46 μmol m–2 s–1 at 36 and 65 Pa, respectively (an enhancement of 31%). In current year needles photosynthetic rates at the growth (pCO2)a were 6·2 ± 0·72 μmol m–2 s–1 at 36 Pa and 10·15 ± 0·64 μmol m–2 s–1 at 65 Pa (an enhancement of 63%). The smaller enhancement of photosynthesis in 1-year-old needles at 65 Pa was accompanied by a reduction in Rubisco activity (39%) and content (40%) compared with that at 36 Pa. Starch and sugar concentrations in 1-year-old needles were not significantly different in the CO2 treatments. There was no evidence in biochemical parameters for down-regulation at elevated (pCO2)a in fully fexpanded needles of the current year cohort. These data show that enhancement of photosynthesis continues to occur in needles after 4 years’ exposure to elevated CO2 concentrations. Photosynthetic acclimation reduces the degree of this enhancement, but only in needles after 1 year of growth. Thus, responses to elevated CO2 concentration change during the lifetime of needles, and acclimation may not be apparent in current year needles. This transitory effect is most probably attributable to the effects of developmental stage and proximity to actively growing shoots on sink strength for carbohydrates. The implications of such age-dependent responses are that older trees, in which the contribution of older needles to the photosynthetic biomass is greater than in younger trees, may become progressively more acclimated to elevated CO2 concentration.

read more

Citations
More filters
Journal ArticleDOI

Parameterization and Sensitivity Analysis of the BIOME–BGC Terrestrial Ecosystem Model: Net Primary Production Controls

TL;DR: In this paper, the authors present documented input parameters for a process-based ecosystem simulation model, BIOME-BGC, for major natural temperate biomes, including turnover and mortality, allocation, carbon to nitrogen ratios (C:N), the percent of plant material in labile, cellulose, and lignin pools, leaf morphology, leaf conductance rates and limitations, canopy water interception and light extinction.
Journal ArticleDOI

Tree responses to rising CO2 in field experiments: implications for the future forest

TL;DR: Experiments with trees in open-top chamber experiments have provided data on longer-term, larger-scale responses of trees to elevated CO2 under field conditions, confirmed some of the conclusions from previous seedling studies, and challenged other conclusions.
Journal ArticleDOI

Interspecific difference in the photosynthesis-nitrogen relationship: patterns, physiological causes, and ecological importance.

TL;DR: Since plants cannot maximise both PNUE and leaf toughness, there is a trade-off between photosynthesis and persistence, which enables the existence of species with various leaf characteristics on the earth.
Journal ArticleDOI

Environmental change and carbon limitation in trees: a biochemical, ecophysiological and ecosystem appraisal.

TL;DR: It is concluded that the growth of trees is not C-limited, with the key to understanding future responses to climate change being turnover of soil organic matter and nutrient cycling.
Journal ArticleDOI

Photosynthesis–nitrogen relationships: interpretation of different patterns between Pseudotsuga menziesii and Populus × euroamericana in a mini-stand experiment

TL;DR: Differences in the photosynthesis-nitrogen relationship and PNUE between Douglas-fir and poplar primarily reflect a different investment of N to active Rubisco, and possibly a different constraint to CO2 diffusion.
References
More filters
Journal ArticleDOI

A Biochemical Model of Photosynthetic CO 2 Assimilation in Leaves of C 3 Species

TL;DR: Various aspects of the biochemistry of photosynthetic carbon assimilation in C3 plants are integrated into a form compatible with studies of gas exchange in leaves.
Journal ArticleDOI

Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy

TL;DR: In this paper, the extinction coefficients for chlorophylls a and b in diethylether (Smith, J.H. and Benitez, A.V., eds.), used in this paper as primary standards, were verified by magnesium determination using atomic absorbance spectrophotometry.
Journal ArticleDOI

Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves.

TL;DR: It was found that the response of the rate of CO2 Assimilation to irradiance, partial pressure of O2, p(O2), and temperature was different at low and high intercellular p(CO2), suggesting that CO2 assimilation rate is governed by different processes at lowand high inter cellular p (CO2).
Journal ArticleDOI

Stomatal conductance and photosynthesis

TL;DR: Under optimal conditions, the most outstanding genotype was ICS-1, both in plant height, number of leaves, and stomatal conductance, this being proof that this genotype develops excellently and stands out if it has the right conditions and water availability.
Journal ArticleDOI

More Efficient Plants : a consequence of rising atmospheric CO2

TL;DR: The primary effect of plants response of plants to rising atmospheric CO2 (Ca) is to increase resource use efficiency, and at the same time it stimulates higher rates of photosynthesis and increases light-use efficiency as discussed by the authors.
Related Papers (5)