scispace - formally typeset
Search or ask a question

Showing papers in "Plant Cell and Environment in 1998"


Journal ArticleDOI
TL;DR: In re-assessing the functional significance of compatible solute accumulation, it is suggested that proline and glycine betaine synthesis may buffer cellular redox potential and contribute to stress-tolerant phenotypes observed.
Abstract: Many plants accumulate organic osmolytes in response to the imposition of environmental stresses that cause cellular dehydration. Although an adaptive role for these compounds in mediating osmotic adjustment and protecting subcellular structure has become a central dogma in stress physiology, the evidence in favour of this hypothesis is largely correlative. Transgenic plants engineered to accumulate proline, mannitol, fructans, trehalose, glycine betaine or ononitol exhibit marginal improvements in salt and/or drought tolerance. While these studies do not dismiss causative relationships between osmolyte levels and stress tolerance, the absolute osmolyte concentrations in these plants are unlikely to mediate osmotic adjustment. Metabolic benefits of osmolyte accumulation may augment the classically accepted roles of these compounds. In re-assessing the functional significance of compatible solute accumulation, it is suggested that proline and glycine betaine synthesis may buffer cellular redox potential. Disturbances in hexose sensing in transgenic plants engineered to produce trehalose, fructans or mannitol may be an important contributory factor to the stress-tolerant phenotypes observed. Associated effects on photoassimilate allocation between root and shoot tissues may also be involved. Whether or not osmolyte transport between subcellular compartments or different organs represents a bottleneck that limits stress tolerance at the whole-plant level is presently unclear. None the less, if osmolyte metabolism impinges on hexose or redox signalling, then it may be important in long-range signal transmission throughout the plant.

1,293 citations


Journal ArticleDOI
TL;DR: Comparison of model results with drought experiments in sunflower and water birch indicated that stomatal regulation of E reflected the species' hydraulic potential for extracting soil water, and that the more sensitiveStomatal response of water Birch to drought was necessary to avoid hydraulic failure.
Abstract: Hydraulic conductivity (K) in the soil and xylem declines as water potential (psi) declines. This results in a maximum rate of steady-state transpiration (E(crit)) and corresponding minimum leaf psi (psi(crit)) at which K has approached zero somewhere in the soil-leaf continuum. Exceeding these limits causes water transport to cease. A model determined whether the point of hydraulic failure (where K = 0) occurred in the rhizosphere or xylem components of the continuum. Below a threshold of root:leaf area (A(R):A(L)), the loss of rhizosphere K limited E(crit) and psi(crit). Above the threshold, loss of xylem K from cavitation was limiting. The A(R):A(L) threshold ranged from > 40 for coarse soils and/or cavitation-resistant xylem to < 0.20 in fine soils and/or cavitation-susceptible xylem. Comparison of model results with drought experiments in sunflower and water birch indicated that stomatal regulation of E reflected the species' hydraulic potential for extracting soil water, and that the more sensitive stomatal response of water birch to drought was necessary to avoid hydraulic failure. The results suggest that plants should be xylem-limited and near their A(R):A(L) threshold. Corollary predictions are (1) within a soil type the A(R):A(L) should increase with increasing cavitation resistance and drought tolerance, and (2) across soil types from fine to coarse the A(R):A(L) should increase and maximum cavitation resistance should decrease.

698 citations


Journal ArticleDOI
TL;DR: A model for coral bleaching is proposed whereby the primary site of heat damage in S, pistillata is carboxylation within the Calvin cycle, as has been observed during heat damageIn higher plants, Damage to PSII and a reduction in F-v/F-m are secondary effects following the overwhelming of photoprotective mechanisms by light.
Abstract: The early effects of heat stress on the photosynthesis of symbiotic dinoflagellates (zooxanthellae) within the tissues of a reef-building coral were examined using pulse-amplitude-modulated (PAM) chlorophyll fluorescence and photorespirometry. Exposure of Stylophora pistillata to 33 and 34 degrees C for 4 h resulted in (1) the development of strong non-photochemical quenching (qN) of the chlorophyll fluorescence signal, (2) marked decreases in photosynthetic oxygen evolution, and (3) decreases in optimal quantum yield (F-v/F-m) of photosystern II (PSII), Quantum yield decreased to a greater extent on the illuminated surfaces of coral branches than on lower (shaded) surfaces, and also when high irradiance intensities were combined with elevated temperature (33 degrees C as opposed to 28 degrees C), qN collapsed in heat-stressed samples when quenching analysis was conducted in the absence of oxygen, Collectively, these observations are interpreted as the initiation of photoprotective dissipation of excess absorbed energy as heat (qN) and O-2-dependent electron flow through the Mehler-Ascorbate-Peroxidase cycle (MAP-cycle) following the point at which the rate of light-driven electron transport exceeds the capacity of the Calvin cycle. A model for coral bleaching is proposed whereby the primary site of heat damage in S, pistillata is carboxylation within the Calvin cycle, as has been observed during heat damage in higher plants, Damage to PSII and a reduction in F-v/F-m (i.e. photoinhibition) are secondary effects following the overwhelming of photoprotective mechanisms by light. This secondary factor increases the effect of the primary variable, temperature. Potential restrictions of electron flow in heat-stressed zooxanthellae are discussed with respect to Calvin cycle enzymes and the unusual status of the dinoflagellate Rubisco, Significant features of our model are that (1) damage to PSII is not the initial step in the sequence of heat stress in zooxanthellae, acid (2) light plays a key secondary role in the initiation of the bleaching phenomena.

641 citations


Journal ArticleDOI
TL;DR: Stem water storage capacity and diurnal patterns of water use were studied in five canopy trees of a seasonal tropical forest in Panama as mentioned in this paper, where Sap flow was measured simultaneously at the top and at the base of each tree using constant energy input thermal probes inserted in the sapwood.
Abstract: Stem water storage capacity and diurnal patterns of water use were studied in five canopy trees of a seasonal tropical forest in Panama. Sap flow was measured simultaneously at the top and at the base of each tree using constant energy input thermal probes inserted in the sapwood. The daily stem storage capacity was calculated by comparing the diurnal patterns of basal and crown sap flow. The amount of water withdrawn from storage and subsequently replaced daily ranged from 4 kg d–1 in a 0·20-m-diameter individual of Cecropia longipes to 54 kg d–1 in a 1·02-m-diameter individual of Anacardium excelsum, representing 9–15% of the total daily water loss, respectively. Ficus insipida, Luehea seemannii and Spondias mombin had intermediate diurnal water storage capacities. Trees with greater storage capacity maintained maximum rates of transpiration for a substantially longer fraction of the day than trees with smaller water storage capacity. All five trees conformed to a common linear relationship between diurnal storage capacity and basal sapwood area, suggesting that this relationship was species-independent and size-specific for trees at the study site. According to this relationship there was an increment of 10 kg of diurnal water storage capacity for every 0·1 m2 increase in basal sapwood area. The diurnal withdrawal of water from, and refill of, internal stores was a dynamic process, tightly coupled to fluctuations in environmental conditions. The variations in basal and crown sap flow were more synchronized after 1100 h when internal reserves were mostly depleted. Stem water storage may partially compensate for increases in axial hydraulic resistance with tree size and thus play an important role in regulating the water status of leaves exposed to the large diurnal variations in evaporative demand that occur in the upper canopy of seasonal lowland tropical forests.

476 citations


Journal ArticleDOI
TL;DR: There was an inverse relationship between the P i concentration in the youngest mature leaf and proteoid root formation, indicating that proteoid roots can form under conditions of adequate P supply and not at the expense of dry matter production.
Abstract: We investigated (1) the effect of constant and altered inorganic phosphate (P i ) supply (1-100 mmol m -3 ) on proteoid root production by white lupin (Lupinus albus L.); and (2) the variation in citrate efflux, enzyme activity and phosphate uptake along the proteoid root axis in solution culture. Proteoid root formation was greatest at P i solution concentrations of 1-10 mmol m -3 and was suppressed at 25 mmol m -3 P i and higher. Except at 1 mmol m -3 P i , the formation of proteoid roots did not affect plant dry matter yields or shoot to root dry matter ratios, indicating that proteoid roots can form under conditions of adequate P supply and not at the expense of dry matter production. Plants with over 50% of the root system as proteoid roots had tissue P concentrations considered adequate for maximum growth, providing additional evidence that proteoid roots can form on P-sufficient plants. There was an inverse relationship between the P i concentration in the youngest mature leaf and proteoid root formation. Citrate efflux and the activities of enzymes associated with citric acid synthesis (phosphoenolpyruvate carboxylase and malate dehydrogenase) varied along the proteoid root axis, being greatest in young proteoid rootlets of the 1-3 cm region from the root tip. Citrate release from the 0-1 and 5-9 cm regions of the proteoid root was only 7% (per unit root length) of that from the 1-3 cm segment. Electrical potential and 32 P i uptake measurements showed that P i uptake was more uniform along the proteoid root than citrate efflux.

289 citations


Journal ArticleDOI
TL;DR: Increased C allocation to roots of M plants was associated with a stimulation of the activities of cell wall and cytoplasmic invertases and of sucrose synthase in roots colonized by VA fungi, which may provide the mechanism enabling increased partitioning of carbohydrate both to the M root system and the fungal symbiont.
Abstract: A comparative analysis of daily carbon (C) budgets and aspects of the C physiology of clover (Trifolium repens L.) colonized by vesicular-arbuscular (VA) mycorrhizal fungi was carried out over a 70 d growth period under conditions designed to ensure that shoots of mycorrhizal (M) and non-mycorrhizal (NM) plants were of similar nutrient status. C budgets did not differ on day 24 but by day 42 M plants had a significantly higher rate of photosynthesis than their NM counterparts when expressed on a whole shoot basis or unit dry weight basis. As both sets of plants were of the same size it was concluded that this greater C gain was the result of increased sink strength provided by the mycorrhizal fungus. By day 53 M plants had become larger than their uncolonized counterparts and a sink-induced stimulation in the rate of photosynthesis was no longer apparent. M plants had higher root sucrose, glucose and fructose pools from day 24. Analyses suggested that these sugars were utilized for trehalose and lipid synthesis, for the production of the large extramatrical mycelium and for the support of the respiratory demands of the M root system. Increased C allocation to roots of M plants was associated with a stimulation of the activities of cell wall and cytoplasmic invertases and of sucrose synthase in roots colonized by VA fungi. Such increases in enzyme activity may provide the mechanism enabling increased partitioning of carbohydrate both to the M root system and the fungal symbiont.

279 citations


Journal ArticleDOI
TL;DR: This use of male-sterile and male-fertile lines of tomato provides new evidence that impairment of pollen and anther development by elevated temperature will be an important contributing factor to decreased fruit set in tomato, and possibly other crops, with global warming.
Abstract: To separate the effects of heat stress on male and female reproductive tissues, male-sterile (MSs) and male-fertile tomatoes (MFs) were placed in growth chambers at 12 h day/12 h night temperatures of 28/22, 30/24 or 32/26 °C from flower appearance to seed maturation (daily mean temperatures of 25, 27 or 29 °C). Pollen from MFs was applied individually to MS flowers. As MFs were self-pollinated, heat stress was experienced by both male and female tissues. At growth temperatures of 29 °C fruit number, fruit weight per plant, and seed number per fruit were only 10%, 6·4% and 16·4%, respectively, compared with those at 25 °C. Heat stress also adversely affected fruitset in MSs, especially when experienced by donor pollen. No fruit at all developed on MSs receiving pollen produced at 29 °C, even when ovule development, pollen germination and subsequent embryo development all took place at 25 °C. Effects on fruitset in MSs were reduced if donor pollen had not experienced heat stress. MSs grown at 29 °C but receiving pollen developing at 25 °C produced 73% as much fruit (both on number and weight basis), had 40% as high fruitset and produced 87% of the seed per fruit as MSs grown at 25 °C. This use of male-sterile and male-fertile lines of tomato provides new evidence that impairment of pollen and anther development by elevated temperature will be an important contributing factor to decreased fruit set in tomato, and possibly other crops, with global warming.

269 citations


Journal ArticleDOI
TL;DR: This article showed that fumigation with monoterpenes reduced the decline of photosynthesis, photorespiration and monoterpene emission found in non-fumigated leaves exposed to high temperatures.
Abstract: Leaves of the monoterpene emitter Quercus ilex were exposed to a temperature ramp with 5 °C steps from 30 to 55 °C while maintained under conditions in which endogenous emission of monoterpenes was allowed or suppressed, or under fumigation with selected exogenous monoterpenes. Fumigation with monoterpenes reduced the decline of photosynthesis, photorespiration and monoterpene emission found in non-fumigated leaves exposed to high temperatures. It also substantially increased respiration when photosynthesis and photorespiration were inhibited by low O2 and CO2-free air. These results indicate that, as previously reported for isoprene, monoterpenes may help plants cope with heat stress. Monoterpenes may enhance membrane stability, thus providing a rather non-specific protection of photosynthetic and respiratory processes. Monoterpene emission was maximal at a temperature of 35 °C and was inhibited at higher temperatures. This is likely to be the result of the temperature dependency of the enzymes involved in monoterpene synthesis. In contrast to other monoterpenes, cis- and trans-β-ocimene did not respond to exposure to high temperatures. Cis-β-ocimene also did not respond to low O2 or to fumigation. These results indicate that cis and trans-β-ocimene may have a different pathway of formation that probably does not involve enzymatic synthesis.

256 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used simulated annealing to fit four commonly used models to predict the dates of flowering of temperatezone trees, the spring warming, sequential, parallel and alternating models.
Abstract: The aim of the present study was to test the four commonly used models to predict the dates of flowering of temperatezone trees, the spring warming, sequential, parallel and alternating models. Previous studies concerning the performance of these models have shown that they were unable to make accurate predictions based on external data. One of the reasons for such inaccuracy may be wrong estimations of the parameters of each model due to the non-convergence of the optimization algorithm towards their maximum likelihood. We proposed to fit these four models using a simulated annealing method which is known to avoid local extrema of any kind of function, and thus is particularly well adapted to fit budburst models, as their likelihood function presents many local maxima. We tested this method using a phenological dataset deduced from aeropalynological data. Annual pollen spectra were used to estimate the dates of flowering of the populations around the sampling station. The results show that simulated annealing provides a better fit than traditional methods. Despite this improvement, classical models still failed to predict external data. We expect the simulated annealing method to allow reliable comparisons among models, leading to a selection of biologically relevant ones.

228 citations


Journal ArticleDOI
TL;DR: In this paper, the authors examined the factors that control daily and seasonal carbon and latent energy fluxes, by comparing a detailed model of the soil-plant-atmosphere continuum against a unique long-term data-set collected using eddy covariance at an undisturbed rain forest site north of Manaus, Brazil.
Abstract: Tropical rain forests account for a significant fraction of global net primary productivity, and are important latent energy (LE) sources, affecting extra-tropical atmospheric circulation. The influence of environmental factors on these fluxes has until recently been poorly understood, largely due to a paucity of data, but in recent years the amount of available data has been increased greatly by use of eddy covariance techniques. In this paper we examine the factors that control daily and seasonal carbon (C) and LE fluxes, by comparing a detailed model of the soil‐plant‐atmosphere continuum against a unique long-term data-set collected using eddy covariance at an undisturbed rain forest site north of Manaus, Brazil. Our initial application of the model was parametrized with simple measurements of canopy structure, and driven with local meteorological data. It made effective predictions of C and LE exchange during the wet season, but dry season predictions were overestimates in both cases. Sensitivity analyses indicated that the best explanation for this behaviour was a seasonal change in soil and root hydraulic resistances ( Rb). An optimization routine was then used to estimate the increase in Rb during the dry season that would be required to explain the reduced dry season fluxes. The local soil, a clay latosol, is typical of much of Amazonia, having very low available water and low hydraulic conductivity. We conclude that an increase in soil‐root hydraulic resistance in the dry season introduces a significant seasonal cycle to carbon and water fluxes from this tropical forest. Furthermore, our model structure appears to be an effective tool for regional and temporal scaling of C and LE fluxes, with primary data requirements being regional and temporal information on meteorology, leaf area index (LAI), foliar N, critical leaf water potentials, and plant and soil hydraulic characteristics.

218 citations


Journal ArticleDOI
TL;DR: It is reported that ROS are required for UV-B-induced down- regulation of the photosynthetic genes and up-regulation of PR genes, as the addition of antioxidants beforeUV-B treatment resulted in a marked reduction in the effect of UV- B on both sets of genes.
Abstract: Supplementary UV-B was shown to lead to a decrease in transcripts encoding the photosynthetic genes Lhcb and psbA and a concomitant increase in transcripts encoding three acid-type pathogenesis-related proteins, PR-1, PR-2 and PR-5, in Arabidopsis thaliana. UV-B radiation has been reported to lead to the generation of reactive oxygen species (ROS). Here we report that ROS are required for UV-B-induced down-regulation of the photosynthetic genes and up-regulation of PR genes, as the addition of antioxidants before UV-B treatment resulted in a marked reduction in the effect of UV-B on both sets of genes. Rises in ROS are frequently accompanied by increases in salicylic acid (SA) accumulation. UV-B treatment of transgenic NahG Arabidopsis plants, which are unable to accumulate SA, showed that the increase in PR transcripts, but not the decrease in photosynthetic transcripts, was dependent on the increase in SA. In addition, a 3 d exposure to UV-B radiation resulted in a 7-fold increase in SA levels. Oxidant treatment of NahG plants indicated that ROS could not up-regulate PR genes in the absence of SA accumulation; however, the down-regulation of photosynthetic transcripts was unchanged from that in wild-type plants. The results indicate that the effects of UV-B on the two sets of genes are mediated through two distinct signal tranduction pathways. One pathway is ROS-dependent but SA-independent and mediates the down-regulation of photosynthetic genes. The other is SA- and ROS-dependent and mediates the up-regulation of the acidic-type PR genes.

Journal ArticleDOI
TL;DR: It is suggested that this additional C gained by colonized plants was allocated to the mycorrhizal fungus and that it is the fungus, by acting as a sink for assimilates, that facilitated the stimulation in the rate of photosynthesis of the plant partner.
Abstract: The influence of vesicular‐arbuscular mycorrhizal (M) colonization on biomass production and photosynthesis of Trifolium repens L. was investigated in two experiments in which the foliar nitrogen and phosphorus contents of nonmycorrhizal (NM) plants were manipulated to be no lower than that of M plants. Throughout both experiments there was a stimulation in the rate of CO 2 assimilation of the youngest, fully expanded leaf of M compared with NM plants. In addition, M plants exhibited a higher specific leaf area compared with NM plants, a response that maximized the area available for CO2 assimilation per unit of carbon (C) invested. Despite the increased rate of photosynthesis in M plants there was no evidence that the additional C gained was converted to biomass production of M plants. It is suggested that this additional C gained by colonized plants was allocated to the mycorrhizal fungus and that it is the fungus, by acting as a sink for assimilates, that facilitated the stimulation in the rate of photosynthesis of the plant partner.

Journal ArticleDOI
TL;DR: In this paper, hydraulic conductivity and percentage loss of conductivity (PLC) were measured on a ring-porous (Fraxinus americana L., white ash), a diffuse porous (Acer rubrum L., red maple) and a coniferous (Picea rubens Sarg., red spruce) tree species in a temperate deciduous forest in central Massachusetts, USA.
Abstract: Xylem hydraulic conductivity and percentage loss of conductivity (PLC) were measured on a ring-porous (Fraxinus americana L., white ash), a diffuse porous (Acer rubrum L., red maple) and a coniferous (Picea rubens Sarg., red spruce) tree species in a temperate deciduous forest in central Massachusetts, USA. Measurements were made on current and 1-year-old branch segments in the afternoon and on the following morning. Afternoon PLC was 45 to 70% for the current year's extension growth in both white ash and red maple. Morning PLC was significantly lower (10–40%). Conductivity also varied diurnally suggesting, on average, a 50% recovery from cavitation overnight. Red spruce showed lower PLC and conductivity and a less pronounced night-time recovery. Diurnal variation in hydraulic conductivity and PLC suggests that embolism removal occurred in all three species despite the existence of tension within the xylem. Further evidence for embolism removal was observed with an in situ double-staining experiment in which dyes were fed to a transpiring branch during the late afternoon and the following morning. Examination of stem cross-sections showed that a larger number of vessels were conductive in the morning than on the preceding afternoon. Results of this study suggest that hydraulic capacity is highly dynamic and that conductivity measurements reflect a balance between two processes: cavitation and embolism removal.

Journal ArticleDOI
TL;DR: The results demonstrated that none of the models currently applied to simulate isoprene or monoterpene emissions correctly predicts the short-term effects of light and temperature on Q. ilex emissions.
Abstract: In a laboratory study, we investigated the monoterpene emissions from Quercus ilex, an evergreen sclerophyllous Mediterranean oak species whose emissions are light dependent. We examined the light and temperature responses of individual monoterpenes emitted from leaves under various conditions, the effect of heat stress on emissions, and the emission-onset during leaf development. Emission rate increased 10-fold during leaf growth, with slight changes in the composition. At 30 °C and saturating light, the monoterpene emission rate from mature leaves averaged 4·1 nmol m ‐2 s ‐1 , of which α-pinene, sabinene and β-pinene accounted for 85%. The light dependence of emission was similar for all monoterpenes: it resembled the light saturation curve of CO2 assimilation, although monoterpene emission continued in the dark. Temperature dependence differed among emitted compounds: most of them exhibited an exponential increase up to 35 °C, a maximum at 42 °C, and a slight decline at higher temperatures. However, the two acyclic isomers cisβ-ocimene and trans-β-ocimene were hardly detected below 35 °C, but their emission rates increased above this temperature as the emission rates of other compounds fell, so that total emission of monoterpenes exponentially increased from 5 to 45 °C. The ratio between ocimene isomers and other compounds increased with both absolute temperature and time of heat exposure. The light dependence of emission was insensitive to the temperature at which it was measured, and vice versa the temperature dependence was insensitive to the light regime. The results demonstrated that none of the models currently applied to simulate isoprene or monoterpene emissions correctly predicts the short-term effects of light and temperature on Q. ilex emissions. The percentage of fixed carbon lost immediately as monoterpenes ranged between 0·1 and 6·0% depending on temperature, but rose up to 20% when leaves were continuously exposed to temperatures between 40 and 45 °C.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated variation in intrinsic water-use efficiency during the past century by analyzing tree rings of beech growing in north-eastern France, and two different silvicultural systems were studied: high forest and coppice-with-standards.
Abstract: We investigated variation in intrinsic water-use efficiency during the past century by analysing δ 13 C in tree rings of beech growing in north-eastern France. Two different silvicultural systems were studied: high forest and coppice-with-standards. We studied separately effects related to the age of the tree at the time the ring was formed and effects attributable to environmental changes. At young ages, δ 13 C shows an increase of more than 1‰. However, age-related trends differ in high forest and coppice-with-standards. Changes in microenvironmental variables during stand maturation, and physiological changes related to structural development of the trees with ageing, could explain these results. During the past century, δ 13 C in tree rings shows a pattern of decline that is not paralleled by air δ 13 C changes. Isotopic discrimination has significantly decreased from 18.1 to 16.4‰ in high forest and varied insignificantly between 17.4 and 16.9‰ in coppice-with-standards. As a consequence, intrinsic water-use efficiency has increased by 44% in high forest and 23% in coppice-with-standards during the past century. These results accord with the increased water-use efficiency observed in controlled experiments under a CO 2 -enriched atmosphere. However, other environmental changes, such as nitrogen deposition, may be responsible for such trends.

Journal ArticleDOI
TL;DR: Seasonal and diurnal fruit growth, expressed in terms of dry and fresh mass changes, was calculated for conditions of water stress with various crop loads and revealed intensive growth by night and midday fruit shrinkage, which depend on plant water status and on crop load.
Abstract: A model of fruit growth was developed, based on a biophysical representation of water and dry material transport, which is coupled with cell wall extension stimulated by turgor pressure. The fluxes of materials connect the growing fruit with the parent plant (by phloem and xylem transport) and with the ambient atmosphere (by respiration and transpiration). The sugars are transported from the phloem to the fruit mesocarp by mass flow, passive diffusion and an active (and/or facilitated) mechanism. The stages after cell division has ceased and when fruit growth is due mainly to cell enlargement were modelled. This enabled us to consider the fruit as a cell community with a constant number of cells and to apply directly the equation describing the effect of hydrostatic pressure on the irreversible cell wall expansion elaborated originally for a single cell. The model was applied to the peach [Prunus persica (L.) Batsch] fruit. Seasonal and diurnal fruit growth, expressed in terms of dry and fresh mass changes, was calculated for conditions of water stress with various crop loads. Simulation of the diurnal patterns of fruit fresh mass variation revealed, in agreement with observations, intensive growth by night and midday fruit shrinkage, which depend on plant water status and on crop load.

Journal ArticleDOI
TL;DR: Net fluxes of NH4+ and NO3– along adventitious roots of rice and the primary seminal root of maize were investigated under nonperturbing conditions using ion-selective microelectrodes to find that the layer of sclerenchymatous fibres may have limited ion absorption in the older regions of rice roots.
Abstract: Net fluxes of NH4+ and NO3– along adventitious roots of rice (Oryza sativa L.) and the primary seminal root of maize (Zea mays L.) were investigated under nonperturbing conditions using ion-selective microelectrodes. The roots of rice contained a layer of sclerenchymatous fibres on the external side of the cortex, whereas this structure was absent in maize. Net uptake of NH4+ was faster than that of NO3– at 1 mm behind the apex of both rice and maize roots when these ions were supplied together, each at 0·1 mol m–3. In rice, NH4+ net uptake declined in the more basal regions, whereas NO3– net uptake increased to a maximum at 21 mm behind the apex and then it also declined. Similar patterns of net uptake were observed when NH4+ or NO3– was the sole nitrogen source, although the rates of NO3– net uptake were faster in the absence of NH4+. In contrast to rice, rates of NH4+ and NO3– net uptake in the more basal regions of maize roots were similar to those near the root apex. Hence, the layer of sclerenchymatous fibres may have limited ion absorption in the older regions of rice roots.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the effect of carbon dioxide on the diurnal regulation of NR activity in source leaves and found that enhanced carbon dioxide did not increase leaf NR activity, but rather reduced it in the middle of the photoperiod.
Abstract: Higher rates of nitrate assimilation are required to support faster growth in enhanced carbon dioxide. To investigate how this is achieved, tobacco plants were grown on high nitrate and high light in ambient and enhanced (700 μmol mol–1) carbon dioxide. Surprisingly, enhanced carbon dioxide did not increase leaf nitrate reductase (NR) activity in the middle of the photoperiod. Possible reasons for this anomalous result were investigated. (a) Measurements of biomass, nitrate, amino acids and glutamine in plants fertilized once and twice daily with 12 mol m–3 nitrate showed that enhanced carbon dioxide did not lead to a nitrate limitation in these plants. (b) Enhanced carbon dioxide modified the diurnal regulation of NR activity in source leaves. The transcript for nia declined during the light period in a similar manner in ambient and enhanced carbon dioxide. The decline of the transcript correlated with a decrease of nitrate in the leaf, and was temporarily reversed after re-irrigating with nitrate in the second part of the photoperiod. The decline of the transcript was not correlated with changes of sugars or glutamine. NR activity and protein decline in the second part of the photoperiod, and NR is inactivated in the dark in ambient carbon dioxide. The decline of NR activity was smaller and dark inactivation was partially reversed in enhanced carbon dioxide, indicating that post-transcriptional or post-translational regulation of NR has been modified. The increased activation and stability of NR in enhanced carbon dioxide was correlated with higher sugars and lower glutamine in the leaves. (c) Enhanced carbon dioxide led to increased levels of the minor amino acids in leaves. (d) Enhanced carbon dioxide led to a large decrease of glycine and a small decrease of serine in leaves of mature plants. The glycine:serine ratio decreased in source leaves of older plants and seedlings. The consequences of a lower rate of photorespiration for the levels of glutamine and the regulation of nitrogen metabolism are discussed. (e) Enhanced carbon dioxide also modified the diurnal regulation of NR in roots. The nia transcript increased after nitrate fertilization in the early and the second part of the photoperiod. The response of the transcript was not accentuated in enhanced carbon dioxide. NR activity declined slightly during the photoperiod in ambient carbon dioxide, whereas it increased 2-fold in enhanced carbon dioxide. The increase of root NR activity in enhanced carbon dioxide was preceded by a transient increase of sugars, and was followed by a decline of sugars, a faster decrease of nitrate than in ambient carbon dioxide, and an increase of nitrite in the roots. (f) To interpret the physiological significance of these changes in nitrate metabolism, they were compared with the current growth rate of the plants. (g) In 4–5-week-old plants, the current rate of growth was similar in ambient and enhanced carbon dioxide (≈ 0·4 g–1 d–1). Enhanced carbon dioxide only led to small changes of NR activity, nitrate decreased, and overall amino acids were not significantly increased. (h) Young seedlings had a high growth rate (0·5 g–1 d–1) in ambient carbon dioxide, that was increased by another 20% in enhanced carbon dioxide. Enhanced carbon dioxide led to larger increases of NR activity and NR activation, a 2–3-fold increase of glutamine, a 50% increase of glutamate, and a 2–3-fold increase in minor amino acids. It also led to a higher nitrate level. It is argued that enhanced carbon dioxide leads to a very effective stimulation of nitrate uptake, nitrate assimilation and amino acid synthesis in seedlings. This will play an important role in allowing faster growth rates in enhanced carbon dioxide at this stage.

Journal ArticleDOI
TL;DR: Drought protected the plants from ozone injuries under high-stress conditions in the chamber experiment, however, enhanced ozone damage was observed in birch saplings grown under restricted water supply.
Abstract: The physiological, stomatal and ultrastructural responses to ozone and drought of ozone-sensitive and more ozonetolerant birch (Betula pendula Roth.) clones were studied singly and in combination, in a high-stress chamber experiment and in a low-stress open-field experiment. In the chamber experiment, well watered (WW), moderately watered (MW) or drought-stressed (DS) saplings were exposed for 36 d to 0 or 130 nmol mol ∇1 ozone. In the open-field experiment, well watered or drought-stressed saplings were grown for one growing season in ambient air or exposed to 1·8 〈 ambient ozone. Drought stress reduced growth rate, stomatal conductance, stomatal density and the proportion of starch and thylakoids in chloroplasts, but stimulated net photosynthesis, Rubisco and chlorophyll quantity at the end of the growing season, and increased the size and density of plastoglobuli. Ozone fumigations caused more variable, clone- and exposuredependent responses in growth, decreased stomatal conductance and net photosynthesis, an increased number of stomata, visible and ultrastructural chloroplast injuries, and enhanced autumn yellowing of the leaves. Ozoneinduced changes in plastoglobuli, starch and thylakoids resembled drought responses. The two experiments revealed that, depending on the experimental conditions and the variable, the response to drought and ozone stress can be independent, additive or interactive. Drought protected the plants from ozone injuries under high-stress conditions in the chamber experiment. In the low-stress, open-field experiment, however, enhanced ozone damage was observed in birch saplings grown under restricted water supply.

Journal ArticleDOI
TL;DR: It is proposed that the ameliorative effects of calcium on citrus grown under salinity are mostly related to reduction of leaf abscission, whereas chloride correlations with declines in photosynthesis or increases in succulence appear to be indirect.
Abstract: In citrus, the relative contributions of chloride and cations to growth disturbances induced by salinity are a matter of controversy. Chloride salts (15 mol m–3 CaCl2, 30 mol m–3 CaCl and 30 mol m–3 KCl) reduced growth and gas exchange parameters, increased leaf damage and abscission and produced anatomical disarrangements and mineral imbalances in seedlings of sensitive Carrizo citrange (Citrus sinensis x Poncirus trifoliata) and tolerant Cleopatra mandarin (Citrus reshni). In both cultivars, Ca2+ was more beneficial, and K+ more detrimental, for growth than sodium. Photosynthesis and growth disturbances were highly correlated (P≤ 0·001) with leaf Cl– build-up. In the sensitive genotype, Cl– was also significantly correlated with several leaf anatomical disarrangements, such as increase in succulence. In comparison with sodium, both calcium and potassium increased leaf Cl– content (up to 25 and 69%, respectively). Protective calcium effects were not linked to improvement of photosynthesis, reduction of leaf anatomical disarrangements, or prevention of Cl– and Na+ increases. It is proposed that the ameliorative effects of calcium on citrus grown under salinity are mostly related to reduction of leaf abscission. Collectively, the data suggest a cause–effect relationship between Cl– build-up and reduced growth, whereas chloride correlations with declines in photosynthesis or increases in succulence appear to be indirect.

Journal ArticleDOI
TL;DR: In this article, the effect of elevated CO2 and different levels of nitrogen on the partitioning of nitrogen between photosynthesis and a constitutive nitrogen-based secondary metabolite (the cyanogenic glycoside prunasin) was examined in Eucalyptus cladocalyx.
Abstract: The effect of elevated CO2 and different levels of nitrogen on the partitioning of nitrogen between photosynthesis and a constitutive nitrogen-based secondary metabolite (the cyanogenic glycoside prunasin) was examined in Eucalyptus cladocalyx. Our hypothesis was that the expected increase in photosynthetic nitrogen-use efficiency of plants grown at elevated CO2 concentrations would lead to an effective reallocation of available nitrogen from photosynthesis to prunasin. Seedlings were grown at two concentrations of CO2 and nitrogen, and the proportion of leaf nitrogen allocated to photosynthesis, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), protein and prunasin compared. Up to 20% of leaf nitrogen was allocated to the cyanogenic glycoside, although this proportion varied with leaf age, position and growth conditions. Leaf prunasin concentration was strongly affected by nitrogen supply, but did not increase, on a dry weight basis, in the leaves from the elevated CO 2 treatments. However, the proportion of nitrogen allocated to prunasin increased significantly, in spite of a decreasing pool of leaf nitrogen, in the plants grown at elevated concentrations of CO2. There was less protein in leaves of plants grown at elevated CO2 in both nitrogen treatments, while the concentration of active sites of Rubisco only decreased in plants from the low-nitrogen treatment. These changes in leaf chemistry may have significant implications in terms of the palatability of foliage and defence against herbivores.

Journal ArticleDOI
TL;DR: Treatment of Mesembryanthemum crystallinum for several days with 0·4 kmol m–3 NaCl in the root medium, in parallel to an increase of the cell sap osmolarity enhances activity of important antioxidative enzymes, such as superoxide dismutases (SODs), and explains earlier findings that CAM plants are more resistant than C3 plants to environmental stress as imposed by, for example, SO2 and O3.
Abstract: BSA, bovine serum albumin CAM, Crassulacean acid metabolism DTT, dithiothreitol EDTA, ethylenediaminetetraacetic acid FPLCfast protein liquid chromatography HEPES, N-(2-hydroxyethyl)piperazine-Ń-(ethanesulphonic acid) ME, β-mercaptoethanol NBT, nitro blue tetrazolium PAGE, polyacrylamide gel electrophoresis SDS, sodium dodecyl sulphate SDS-PAGE, sodium dodecyl sulphate polyacrylamide gel electrophoresis Rubisco, ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) SOD, superoxide dismutase (EC 1.15.1.1) TEMED, N,N,Ń,Ń-tetramethylethylenediamine Tris, Tris (hydroxymethyl) aminomethane Tricine, N-Tris(hydroxymethyl)methylglycine Treatment of Mesembryanthemum crystallinum for several days with 0·4 kmol m–3 NaCl in the root medium, in parallel to an increase of the cell sap osmolarity enhances activity of important antioxidative enzymes, such as superoxide dismutases (SODs). M. crystallinum is equipped with three SOD isoforms. These isoforms were identified as Mn-, Fe-, and Cu/Zn-SODs, respectively. Mn-SOD was found in the mitochondrial fraction, Fe-SOD in the chloroplast fraction, and Cu/Zn-SOD is probably localized in the cytosol. The Fe-SOD found in M. crystallinum is the first iron-containing SOD enzyme to be characterized in the plant family Aizoaceae. Salt treatment increases the activity of this isoform earlier than the other SODs. Molecular masses of SOD isoforms were determined as 82, 48 and 34 kDa for Mn-, Fe-, Cu/Zn-SODs, respectively. Native Mn-SOD seems to be a tetramer, while Fe-SOD and Cu/Zn-SOD are dimers. All SOD isoforms show high thermal stability. Mn-SOD is active even after short heating at 90 °C and Fe-SOD at 70 °C. Moreover, high concentrations of β-mercaptoethanol used as a reducing agent did not destroy the function of all isoforms. With the salinity treatment in M. crystallinum, Crassulacean acid metabolism (CAM) is induced. Build-up of large stationary O2 concentrations in the leaf air spaces is associated with the photosynthetic CO2 reduction behind closed stomata in phase III of CAM. This illustrates why M. crystallinum may require higher antioxidative activities under NaCl stress and also explains earlier findings that CAM plants are more resistant than C3 plants to environmental stress as imposed by, for example, SO2 and O3.

Journal ArticleDOI
TL;DR: In this article, the authors explore the extent to which a simple mechanistic model of short-term plant carbon dynamics can account for a number of generally observed plant phenomena, such as leaf acclimation to light observed both temporally within the growing season and spatially within plant canopies.
Abstract: We explore the extent to which a simple mechanistic model of short-term plant carbon (C) dynamics can account for a number of generally observed plant phenomena. For an individual, fully expanded leaf, the model predicts that the fast-turnover labile C, starch and protein pools are driven into an approximate or moving steady state that is proportional to the average leaf absorbed irradiance on a time-scale of days to weeks, even under realistic variable light conditions, in qualitative agreement with general patterns of leaf acclimation to light observed both temporally within the growing season and spatially within plant canopies. When the fastturnover pools throughout the whole plant (including stems and roots) also follow this moving steady state, the model predicts that the time-averaged whole-plant net primary productivity is proportional to the time-averaged canopy absorbed irradiance and to gross canopy photosynthesis, and thus suggests a mechanistic explanation of the observed approximate constancy of plant lightuse efficiency (LUE) and carbon-use efficiency. Under variable light conditions, the fast-turnover pool sizes and the LUE are predicted to depend negatively on the coefficient of variation of irradiance. We also show that the LUE has a maximum with respect to the fraction of leaf labile C allocated to leaf protein synthesis ( alp), reflecting a trade-off between leaf photosynthesis and leaf respiration. The optimal value of alp is predicted to decrease at elevated [CO2]a, suggesting an adaptive interpretation of leaf acclimation to CO2. The model therefore brings together a number of empirical observations within a common mechanistic framework.

Journal ArticleDOI
TL;DR: In this article, chlorogenic acid (CGA, 3-Ocaffeoylquinic acid) was found to be a highly efficient scavenger of these free radicals, surpassing the activity of all other phenylpropanoids tested.
Abstract: To assess the possible physiological function of chlorogenic acid (CGA, 3-O-caffeoylquinic acid) in vivo, we characterized the free radical scavenging properties of pure phenylpropanoids and leaf extracts against two free radicals, superoxide and the 2,2'-azinobis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical cation. CGA was found to be a highly efficient scavenger of these free radicals, surpassing the activity of all other phenylpropanoids tested, as well as the 'classical' antioxidant ascorbate, Seasonal differences in the leaf content of CGA were examined in field populations of the broadleaf evergreen Mahonia repens growing in different light environments. Leaves of fully sun-exposed plants contained significantly more (74 ± 10 mmol m -2 ) CGA in winter than leaves from plants growing under deeply shaded conditions (17 ± 2 mmol m -2 ). Sun-acclimated, but not shade-acclimated, leaves also produced high levels of anthocyanins in winter, suggesting a simultaneous increase in carbon flow through the phenylpropanoid and flavonoid pathways in response to high light and seasonal low temperature stress. In summer, high light-acclimated leaves contained 2-fold less CGA than in winter, whereas CGA levels were similar between seasons in shaded leaves. Consistent with the strong scavenging capacity of CGA measured in vitro, a linear correlation was observed between CGA content and the antioxidant activity of leaf extracts in both scavenging assays. On the basis of these results, we propose that CGA is a powerful hydrogen-donating antioxidant that may play an important role in mitigating the effects of oxidative stress in plants.

Journal ArticleDOI
TL;DR: In this article, a mechanistic model has been used to examine the environmental regulation of photosynthetic gas exchange in moss, which includes a simple light attenuation function that imparts curvature to the light response curve for net assimilation, enabling the use of physiologically realistic values for the biochemical parameters.
Abstract: A mechanistic model has been used to examine the environmental regulation of photosynthetic gas exchange in moss. The effects of water content on conductance to CO 2 and on photosynthetic capacity during desiccation were calculated from the carbon isotope discrimination data of Williams & Flanagan (1996, Oecologia 108, pp. 38-46) and combined with the biochemical model of Farquhar et al. (1980, Planta 149, pp. 78-90). The model includes a simple light attenuation function that imparts curvature to the light response curve for net assimilation, enabling the use of physiologically realistic values for the biochemical parameters. Measurements of gas exchange for Sphagnum and Pleurozium were made in an old black spruce ecosystem over a growing season in order to assign values to parameters in the model. The calculated maximum rates of carboxylation by Rubisco (V max ) were 5, 14 and 6 μmol m -2 s -1 for Sphagnum during the spring, summer and autumn seasons of 1996, respectively. The increase in V max during the summer was consistent with an increased allocation of resources to the photosynthetic apparatus. In contrast, no seasonal variation in V max was observed in Pleurozium with average values of 7, 5 and 7 μmol m -2 s -1 during the spring, summer and autumn, respectively.

Journal ArticleDOI
TL;DR: In this article, the role of leaf water potential in controlling stomatal conductance (gs) was examined in the desert subshrub Hymenoclea salsola.
Abstract: The role of leaf water potential in controlling stomatal conductance (gs) was examined in the desert subshrub Hymenoclea salsola. For plants operating at high irradiance, stomatal closure in response to high leaf-air humidity gradient (D) was largely reversed by soil pressurization. Stomatal re-opening eliminated, on average, 89% of the closure normally induced by high D. Transpiration rates (E) reached under these conditions were far higher than maximal rates normally observed at any point of the D response. In situ stem psychrometry indicated that water flux at all times conformed to a simple Ohm’s-law analogy. Under conditions of high D, E increased substantially in response to soil pressurization. Stomatal regulation did not constrain E during this treatment, but did result in nearly constant minimum leaf water potentials.

Journal ArticleDOI
TL;DR: In this paper, a microelectrodes were used to measure NH4+, NO3-and H+ fluxes along the primary root of maize seedlings, and the high spatial resolution of the measurements enabled the authors to establish that acidification in the root expansion zone is maintained regardless of nitrogen source.
Abstract: Ion-selective microelectrodes were used to measure NH4+, NO3– and H+ fluxes along the primary root of maize seedlings. Plants were exposed to nutrient solutions containing NH4+, NO3– or both ions. Nitrogen fluxes along the root varied substantially among the different treatments. Net NH4+ and NO3– uptake and H+ extrusion were low at the very apex of the root and generally increased in the more basal regions. In the absence of nitrogen or in the presence of NO3– alone, net H+ uptake (and root surface alkalinization) occurred at the root tip (0–1 mm), whereas net H+ extrusion occurred in all other regions. In the presence of NH4+ alone, a dramatic increase in net H+ extrusion was detected in all regions except for the region 6–11 mm from the apex. In contrast, when NO3– alone was supplied, net H+ extrusion was depressed at all locations except for the tip (0–1 mm). When both NH4+ and NO3– were supplied, NO3– uptake was suppressed at all locations while net H+ extrusion was increased relative to NO3– alone. The capacities to absorb NH4+ and NO3– at the tip were similar, as indicated by flux rates when NH4+ or NO3– were supplied as sole sources, but when supplied together, net NO3– uptake was half that of net NH4+ uptake, indicating that NH4+ may satisfy the nitrogen requirements of the poorly vascularized apical tissue in the most energy-efficient way. The high spatial resolution of the measurements enabled us to establish that acidification in the root expansion zone is maintained regardless of nitrogen source.

Journal ArticleDOI
TL;DR: The relationship between stomatal aperture and guard cell pressure was measured directly in four different species using a special cell pressure probe technique and epidermal turgor was found to have a pronounced closing effect on stomata of T. virginiana.
Abstract: The relationship between stomatal aperture (a) and guard cell pressure (Pg) was measured directly in four different species (Vicia faba, Tradescantia virginiana, Ginkgo biloba and Nephrolepis exaltata) using a special cell pressure probe technique. The effect of epidermal turgor (Pep) on this relationship was also measured in T. virginiana. The relationship was sigmoidal for V. faba and T. virginiana, but entirely convex for G. biloba and N. exaltata. Epidermal turgor was found to have a pronounced closing effect on stomata of T. virginiana. Maximum aperture with full epidermal turgor (0·92 MPa) was about half that with zero epidermal turgor. Also, with full epidermal turgor stomata of T. virginiana did not begin to open until Pg was more than 1·25 MPa. These characteristics were used to develop an expression for a as a function of Pg and Pep. Results for the different species are compared and discussed in terms of possible advantages and limitations of water economy.

Journal ArticleDOI
TL;DR: Data indicate that carbohydrate repression of photosynthetic gene expression at elevated CO2 may involve leaf sucrose cycling through acid invertase and hexokinase.
Abstract: Photosynthetic acclimation to elevated CO 2 cannot presently be predicted due to our limited understanding of the molecular mechanisms and metabolic signals that regulate photosynthetic gene expression. We have examined acclimation by comparing changes in the leaf content of RuBP carboxylase/oxygenase (Rubisco) with changes in the transcripts of Rubisco subunit genes and with leaf carbohydrate metabolism. When grown at 1000 mm 3 dm -3 CO 2 , 12 of 16 crop species at peak vegetative growth had a 15-44% decrease in leaf Rubisco protein, but with no specific association with changes in transcript levels measured at midday. Species with only modest reductions in Rubisco content (10-20%) often had a large reduction in Rubisco small subunit gene mRNAs (> 30%), with no reduction in large subunit gene mRNAs. However, species with a very large reduction in Rubisco content generally had only small reductions in transcript mRNAs. Photosynthetic acclimation also was not specifically associated with a change in the level of any particular carbohydrate measured at midday. However, a threshold relationship was found between the reduction in Rubisco content at high CO 2 and absolute levels of soluble acid invertase activity measured in plants grown at ambient or high CO 2 . This relationship was valid for 15 of the 16 species examined. There also occurred a similar, albeit less robust, threshold relationship between the leaf hexose/sucrose ratio at high CO 2 and a reduced photosynthetic capacity ≥ 20%. These data indicate that carbohydrate repression of photosynthetic gene expression at elevated CO 2 may involve leaf sucrose cycling through acid invertase and hexokinase.

Journal ArticleDOI
TL;DR: This field-scale study of wheat using free-air CO2 enrichment found little evidence of acclimatory loss of photosynthetic capacity with growth in elevated pCO2 and a significant and substantial increase in leaf photosynthesis throughout the life of the crop.
Abstract: Spring wheat was grown from emergence to grain maturity in two partial pressures of CO2 (pCO2): ambient air of nominally 37 Pa and air enriched with CO2 to 55 Pa using a free-air CO2 enrichment (FACE) apparatus. This experiment was the first of its kind to be conducted within a cereal field without the modifications or disturbance of microclimate and rooting environment that accompanied previous studies. It provided a unique opportunity to examine the hypothesis that continuous exposure of wheat to elevated pCO2 will lead to acclimatory loss of photosynthetic capacity. The diurnal courses of photosynthesis and conductance for upper canopy leaves were followed throughout the development of the crop and compared to model-predicted rates of photosynthesis. The seasonal average of midday photosynthesis rates was 28% greater in plants exposed to elevated pCO2 than in contols and the seasonal average of the daily integrals of photosynthesis was 21% greater in elevated pCO2 than in ambient air. The mean conductance at midday was reduced by 36%. The observed enhancement of photosynthesis in elevated pCO2 agreed closely with that predicted from a mechanistic biochemical model that assumed no acclimation of photosynthetic capacity. Measured values fell below predicted only in the flag leaves in the mid afternoon before the onset of grain-filling and over the whole diurnal course at the end of grain-filling. The loss of enhancement at this final stage was attributed to the earlier senescence of flag leaves in elevated pCO2. In contrast to some controlled-environment and field-enclosure studies, this field-scale study of wheat using free-air CO2 enrichment found little evidence of acclimatory loss of photosynthetic capacity with growth in elevated pCO2 and a significant and substantial increase in leaf photosynthesis throughout the life of the crop.