scispace - formally typeset
Journal ArticleDOI

Photosynthetic control of chloroplast gene expression

Reads0
Chats0
TLDR
Here it is shown that the redox state of plastoquinone also controls the rate of transcription of genes encoding reaction-centre apoproteins of photosystem I and photosystem II, and the stoichiometry between the two photosystems changes in a way that counteracts the inefficiency produced when either photosystem limits the rates of the other.
Abstract
Redox chemistry—the transfer of electrons or hydrogen atoms—is central to energy conversion in respiration and photosynthesis. In photosynthesis in chloroplasts, two separate, light-driven reactions, termed photosystem I and photosystem II, are connected in series by a chain of electron carriers1,2,3. The redox state of one connecting electron carrier, plastoquinone, governs the distribution of absorbed light energy between photosystems I and II by controlling the phosphorylation of a mobile, light-harvesting, pigment–protein complex4,5. Here we show that the redox state of plastoquinone also controls the rate of transcription of genes encoding reaction-centre apoproteins of photosystem I and photosystem II. As a result of this control, the stoichiometry between the two photosystems changes in a way that counteracts the inefficiency produced when either photosystem limits the rate of the other. In eukaryotes, these reaction-centre proteins are encoded universally within the chloroplast. Photosynthetic control of chloroplast gene expression indicates an evolutionary explanation for this rule: the redox signal-transduction pathway can be short, the response rapid, and the control direct.

read more

Citations
More filters
Journal ArticleDOI

Functional cartography of complex metabolic networks

TL;DR: A methodology is proposed that can find functional modules in complex networks, and classify nodes into universal roles according to their pattern of intra- and inter-module connections, which yields a ‘cartographic representation’ of complex networks.
Book

Molecular mechanisms of photosynthesis

TL;DR: This chapter discusses the organization and structure of Photosynthetic Systems, as well as the history and development of Photosynthesis, and the origins and evolution of photosynthesis.
Journal ArticleDOI

Endosymbiotic Gene Transfer: Organelle Genomes Forge Eukaryotic Chromosomes

TL;DR: Genome sequences reveal that a deluge of DNA from organelle DNA has constantly been bombarding the nucleus since the origin of organelles, abolished organelle autonomy and increased nuclear complexity.
Journal ArticleDOI

Redox Regulation in Photosynthetic Organisms: Signaling, Acclimation, and Practical Implications

TL;DR: This review focuses on current knowledge of the pathways of redox regulation, with discussion of the somewhat juxtaposed hypotheses of "oxidative damage" versus "Oxidative signaling," within the wider context of physiological function, from plant cell biology to potential applications.
Journal ArticleDOI

Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria

TL;DR: The network of redox signals from energy-generating organelles orchestrates metabolism to adjust energy production to utilization, interfacing with hormone signalling to respond to environmental change at every stage of plant development.
References
More filters
Book

Molecular Cloning: A Laboratory Manual

TL;DR: Molecular Cloning has served as the foundation of technical expertise in labs worldwide for 30 years as mentioned in this paper and has been so popular, or so influential, that no other manual has been more widely used and influential.
Journal ArticleDOI

Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy

TL;DR: In this paper, the extinction coefficients for chlorophylls a and b in diethylether (Smith, J.H. and Benitez, A.V., eds.), used in this paper as primary standards, were verified by magnesium determination using atomic absorbance spectrophotometry.
Journal Article

Mechanisms of intracellular protein transport

TL;DR: The general protein apparatus used by all eukaryotes for intracellular transport, including secretion and endocytosis, and for triggered exocyTosis of hormones and neurotransmitters, is uncovered.
Journal ArticleDOI

Biogenesis of Mitochondria

TL;DR: The MITOCHONDRIAL GENETIC SYSTEM, a chronology of key events and events leading to and after the invention of the mitochondria, is described.
Related Papers (5)