scispace - formally typeset
Journal ArticleDOI

Plasmonic Hot Electron Induced Structural Phase Transition in a MoS2 Monolayer

Reads0
Chats0
TLDR
A reversible 2H-to-1T phase transition in a MoS2 monolayer is realized by plasmonic hot electrons, resulting in an effective shift of photoluminescence.
Abstract
A reversible 2H-to-1T phase transition in a MoS2 monolayer is realized by plasmonic hot electrons. This transition can be actively controlled by the incident light intensity, wavelength, sample areas, and perimeters, resulting in an effective shift of photoluminescence. The suggested configuration paves the way for plasmonic optoelectronic device applications of MoS2 in the future.

read more

Citations
More filters
Journal ArticleDOI

Recent Advances in Ultrathin Two-Dimensional Nanomaterials

TL;DR: The unique advances on ultrathin 2D nanomaterials are introduced, followed by the description of their composition and crystal structures, and the assortments of their synthetic methods are summarized.
Journal ArticleDOI

Plasmon-induced hot carrier science and technology

TL;DR: Recent advances in the understanding and application of plasmon-induced hot carrier generation are discussed and some of the exciting new directions for the field are highlighted.
Journal ArticleDOI

Two-dimensional transition metal dichalcogenide nanosheet-based composites.

TL;DR: This critical review will introduce the recent progress in hybrid nanoarchitectures based on 2D TMD nanosheets, and their synthetic strategies, properties, and applications are systematically summarized and discussed, with emphasis on those new appealing structures, properties and functions.
Journal ArticleDOI

2D Transition‐Metal‐Dichalcogenide‐Nanosheet‐Based Composites for Photocatalytic and Electrocatalytic Hydrogen Evolution Reactions

TL;DR: Recent progress in photocatalytic and electrocatalytic HERs using 2D TMD-based composites as catalysts is discussed.
Journal ArticleDOI

Nanoarchitectonics for Transition-Metal-Sulfide-Based Electrocatalysts for Water Splitting.

TL;DR: Insightful insights gathered in the process of studying TMS are provided, and valuable guidelines for engineering other kinds of nanomaterial catalysts for energy conversion and storage technologies are described.
References
More filters
Journal ArticleDOI

Electronics and optoelectronics of two-dimensional transition metal dichalcogenides.

TL;DR: This work reviews the historical development of Transition metal dichalcogenides, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Journal ArticleDOI

Emerging Photoluminescence in Monolayer MoS2

TL;DR: This observation shows that quantum confinement in layered d-electron materials like MoS(2), a prototypical metal dichalcogenide, provides new opportunities for engineering the electronic structure of matter at the nanoscale.
Journal ArticleDOI

Plasmonics: merging photonics and electronics at nanoscale dimensions.

TL;DR: The current status and future prospects of plAsmonics in various applications including plasmonic chips, light generation, and nanolithography are reviewed.
Journal ArticleDOI

Ultrasensitive photodetectors based on monolayer MoS2.

TL;DR: Ultraensitive monolayer MoS2 phototransistors with improved device mobility and ON current are demonstrated, showing important potential for applications in MoS 2-based integrated optoelectronic circuits, light sensing, biomedical imaging, video recording and spectroscopy.
Journal ArticleDOI

Anomalous lattice vibrations of single- and few-layer MoS2.

TL;DR: This work exemplifies the evolution of structural parameters in layered materials in changing from the three-dimensional to the two-dimensional regime by characterized by Raman spectroscopy.
Related Papers (5)
Trending Questions (1)
Can MoS2 phase transition be made by gold thermal evaporation on MoS2 channel?

The paper does not mention anything about gold thermal evaporation on MoS2 channel for inducing phase transition.