scispace - formally typeset
Open AccessJournal ArticleDOI

Anomalous lattice vibrations of single- and few-layer MoS2.

TLDR
This work exemplifies the evolution of structural parameters in layered materials in changing from the three-dimensional to the two-dimensional regime by characterized by Raman spectroscopy.
Abstract
Molybdenum disulfide (MoS2) of single- and few-layer thickness was exfoliated on SiO2/Si substrate and characterized by Raman spectroscopy. The number of S−Mo−S layers of the samples was independently determined by contact-mode atomic force microscopy. Two Raman modes, E12g and A1g, exhibited sensitive thickness dependence, with the frequency of the former decreasing and that of the latter increasing with thickness. The results provide a convenient and reliable means for determining layer thickness with atomic-level precision. The opposite direction of the frequency shifts, which cannot be explained solely by van der Waals interlayer coupling, is attributed to Coulombic interactions and possible stacking-induced changes of the intralayer bonding. This work exemplifies the evolution of structural parameters in layered materials in changing from the three-dimensional to the two-dimensional regime.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Electronics and optoelectronics of two-dimensional transition metal dichalcogenides.

TL;DR: This work reviews the historical development of Transition metal dichalcogenides, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Journal ArticleDOI

Atomically thin MoS2: a new direct-gap semiconductor

TL;DR: The electronic properties of ultrathin crystals of molybdenum disulfide consisting of N=1,2,…,6 S-Mo-S monolayers have been investigated by optical spectroscopy and the effect of quantum confinement on the material's electronic structure is traced.
Journal ArticleDOI

Raman spectroscopy as a versatile tool for studying the properties of graphene

TL;DR: The state of the art, future directions and open questions in Raman spectroscopy of graphene are reviewed, and essential physical processes whose importance has only recently been recognized are described.
Journal ArticleDOI

Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility

TL;DR: In this paper, the 2D counterpart of layered black phosphorus, which is called phosphorene, is introduced as an unexplored p-type semiconducting material and the authors find that the band gap is direct, depends on the number of layers and the in-layer strain, and significantly larger than the bulk value of 0.31-0.36 eV.
References
More filters
Journal ArticleDOI

The rise of graphene

TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Journal ArticleDOI

Raman spectrum of graphene and graphene layers.

TL;DR: This work shows that graphene's electronic structure is captured in its Raman spectrum that clearly evolves with the number of layers, and allows unambiguous, high-throughput, nondestructive identification of graphene layers, which is critically lacking in this emerging research area.
Journal ArticleDOI

Atomically thin MoS2: a new direct-gap semiconductor

TL;DR: The electronic properties of ultrathin crystals of molybdenum disulfide consisting of N=1,2,…,6 S-Mo-S monolayers have been investigated by optical spectroscopy and the effect of quantum confinement on the material's electronic structure is traced.
Journal ArticleDOI

Two-dimensional atomic crystals

TL;DR: By using micromechanical cleavage, a variety of 2D crystals including single layers of boron nitride, graphite, several dichalcogenides, and complex oxides are prepared and studied.
Journal ArticleDOI

Spatially Resolved Raman Spectroscopy of Single- and Few-Layer Graphene

TL;DR: In this article, the authors used a scanning confocal approach to collect spectral data with spatial resolution, which allows them to directly compare Raman images with scanning force micrographs.
Related Papers (5)