scispace - formally typeset
Open AccessJournal ArticleDOI

Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer

Peter W. Shor
- 01 Jun 1999 - 
- Vol. 41, Iss: 2, pp 303-332
TLDR
In this paper, the authors considered factoring integers and finding discrete logarithms, two problems that are generally thought to be hard on classical computers and that have been used as the basis of several proposed cryptosystems.
Abstract
A digital computer is generally believed to be an efficient universal computing device; that is, it is believed to be able to simulate any physical computing device with an increase in computation time by at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. This paper considers factoring integers and finding discrete logarithms, two problems that are generally thought to be hard on classical computers and that have been used as the basis of several proposed cryptosystems. Efficient randomized algorithms are given for these two problems on a hypothetical quantum computer. These algorithms take a number of steps polynomial in the input size, for example, the number of digits of the integer to be factored.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Quantum Computing in the NISQ era and beyond

TL;DR: Noisy Intermediate-Scale Quantum (NISQ) technology will be available in the near future as mentioned in this paper, which will be useful tools for exploring many-body quantum physics, and may have other useful applications.
Journal ArticleDOI

Quantum Computing in the NISQ era and beyond

TL;DR: Noisy Intermediate-Scale Quantum (NISQ) technology will be available in the near future, and the 100-qubit quantum computer will not change the world right away - but it should be regarded as a significant step toward the more powerful quantum technologies of the future.
Journal ArticleDOI

Quantum walks: a comprehensive review

TL;DR: This paper has reviewed several algorithms based on both discrete- and continuous-time quantum walks as well as a most important result: the computational universality of both continuous- and discrete- time quantum walks.
Journal ArticleDOI

Geometric quantum computation using nuclear magnetic resonance

TL;DR: A nuclear magnetic resonance experiment is performed in which a conditional Berry phase is implemented, demonstrating a controlled phase shift gate, and suggests the possibility of an intrinsically fault-tolerant way of performing quantum gate operations.
References
More filters
Book

The Art of Computer Programming

TL;DR: The arrangement of this invention provides a strong vibration free hold-down mechanism while avoiding a large pressure drop to the flow of coolant fluid.
Journal ArticleDOI

A method for obtaining digital signatures and public-key cryptosystems

TL;DR: An encryption method is presented with the novel property that publicly revealing an encryption key does not thereby reveal the corresponding decryption key.
Journal ArticleDOI

Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels

TL;DR: An unknown quantum state \ensuremath{\Vert}\ensure Math{\varphi}〉 can be disassembled into, then later reconstructed from, purely classical information and purely nonclassical Einstein-Podolsky-Rosen (EPR) correlations.
Journal ArticleDOI

On Computable Numbers, with an Application to the Entscheidungsproblem

TL;DR: This chapter discusses the application of the diagonal process of the universal computing machine, which automates the calculation of circle and circle-free numbers.