scispace - formally typeset
Journal ArticleDOI

Pulsed-power-driven high energy density physics and inertial confinement fusion research

Reads0
Chats0
TLDR
The Z accelerator at Sandia National Laboratories delivers ∼20MA load currents to create high magnetic fields (>1000T) and high pressures (megabar to gigabar) in a z-pinch configuration, the magnetic pressure supersonically implodes a plasma created from a cylindrical wire array, which at stagnation typically generates a plasma with energy densities of about 10MJ∕cm3 and temperatures >1keV at 0.1% of solid density as mentioned in this paper.
Abstract
The Z accelerator [R. B. Spielman, W. A. Stygar, J. F. Seamen et al., Proceedings of the 11th International Pulsed Power Conference, Baltimore, MD, 1997, edited by G. Cooperstein and I. Vitkovitsky (IEEE, Piscataway, NJ, 1997), Vol. 1, p. 709] at Sandia National Laboratories delivers ∼20MA load currents to create high magnetic fields (>1000T) and high pressures (megabar to gigabar). In a z-pinch configuration, the magnetic pressure (the Lorentz force) supersonically implodes a plasma created from a cylindrical wire array, which at stagnation typically generates a plasma with energy densities of about 10MJ∕cm3 and temperatures >1keV at 0.1% of solid density. These plasmas produce x-ray energies approaching 2MJ at powers >200TW for inertial confinement fusion (ICF) and high energy density physics (HEDP) experiments. In an alternative configuration, the large magnetic pressure directly drives isentropic compression experiments to pressures >3Mbar and accelerates flyer plates to >30km∕s for equation of state ...

read more

Citations
More filters
Journal ArticleDOI

Experimental astrophysics with high power lasers and Z pinches

TL;DR: High energy density (HED) laboratory astrophysics as discussed by the authors is a new class of experimental science, wherein the properties of matter and the processes that occur under extreme astrophysical conditions can be examined in the laboratory.
Journal ArticleDOI

X-ray Thomson scattering in high energy density plasmas

TL;DR: In this article, the authors developed accurate x-ray scattering techniques to measure the physical properties of dense plasmas for applications in high energy density physics, including inertial confinement fusion, material science, or laboratory astrophysics.
Journal ArticleDOI

The National Ignition Facility: Ushering in a new age for high energy density science

TL;DR: The National Ignition Facility (NIF) [E. I. Moses et al. as discussed by the authors, completed in March 2009, is the highest energy laser ever constructed, which enables a number of experiments in inertial confinement fusion and stockpile stewardship, as well as access to new regimes in a variety of experiments relevant to x-ray astronomy, laserplasma interactions, hydrodynamic instabilities, nuclear astrophysics, and planetary science.
Journal ArticleDOI

Relativistic high-power laser–matter interactions

TL;DR: A review of the recent advances in the field and stresses quantum phenomena that require laser field intensities in excess of the relativistic threshold of ∼ 10 18 W / cm 2 is presented in this article.
Journal ArticleDOI

Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium

TL;DR: In this paper, the authors show direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium, which may constrain the region of hydrogen-helium immiscibility and the boundary layer pressure in standard models of the internal structure of gas-giant planets.
References
More filters
Journal ArticleDOI

Statistical-Mechanical Theory of Irreversible Processes : I. General Theory and Simple Applications to Magnetic and Conduction Problems

TL;DR: In this paper, a general type of fluctuation-dissipation theorem is discussed to show that the physical quantities such as complex susceptibility of magnetic or electric polarization and complex conductivity for electric conduction are rigorously expressed in terms of timefluctuation of dynamical variables associated with such irreversible processes.
Journal ArticleDOI

Ignition and high gain with ultrapowerful lasers

TL;DR: In this article, a capsule is imploded as in the conventional approach to inertial fusion to assemble a high density fuel configuration, and a hole is bored through the capsule corona composed of ablated material, as the critical density is pushed close to the high density core of the capsule by the ponderomotive force associated with high intensity laser light.
Journal ArticleDOI

Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition

TL;DR: This work combines production of compressed matter in a laser-driven implosion with picosecond-fast heating by a laser pulse timed to coincide with the peak compression, allowing efficient compression and heating to be carried out simultaneously, providing a route to efficient fusion energy production.
Book

Solid state theory

TL;DR: Whatever the authors' proffesion, solid state theory can be good resource for reading, and one of them is this professional solidstate theory that has actually been created by Why.
Related Papers (5)